

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY CALIFORNIA

THESIS

UTILIZATION OF WEB SERVICES TO IMPROVE
COMMUNICATION OF OPERATIONAL INFORMATION

by

David Lowery

September 2004

 Thesis Advisor: Don Brutzman
 Co-Advisor: Curtis Blais

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2004

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Utilization of Web Services to Improve Communication of Operational
Information

6. AUTHOR David S. Lowery

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME AND ADDRESS
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME AND ADDRESS
NSA, Ft. Meade, Maryland

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT
Currently under development, the Global Information Grid (GIG) Enterprise Services (ES) is a suite of capabilities

intended to provide improved user access to mission-critical data via Web-based and network technologies. Some of the
problems of implementing such capabilities include non-uniform data formats, incompatible run-time environments and
nonstandard proprietary applications, all of which block operational interoperability.

Web services are specifically designed to address the interoperability challenges of a service-oriented architecture
(SOA) such as the GIG. SOAs are networked infrastructures that are designed to facilitate the interoperability of collections of
services without requiring service context awareness. Standards-based Web services provide the necessary flexibility and
extensibility to ensure information flow is platform, run-time and software independent.

The proof of concept (POC) software example developed for this research demonstrates the flexibility and
extensibility of standards-based, operating-system-independent Web services. The result is an experimental endeavor to
provide a mock operation command center information portal, which provides a notional summary personnel status report to
the commander in real-time from a Web service that was originally generated by a stand-alone client/server system. The POC
is developed with great attention to open-source technologies and open-standards compliance. The key technologies involved
are Extensible Markup Language (XML), the Java programming language, PHP: Hypertext Preprocessor (PHP) scripting
language and Simple Object Access Protocol (SOAP).

This work demonstrates the benefits of leveraging Web services to unlock legacy specialized applications to enhance
the Warfighter’s battlespace awareness by improving information flow via a Web based information portal.

15. NUMBER OF
PAGES

133

14. SUBJECT TERMS
Extensible Markup Language, XML, Web Services, Java Web Services, PHP, Extensible Stylesheet
Language Transformation, XSLT, Web Portal, Common Operating Picture, COP, Global Information
Grid, Enterprise Services, GIG, ES, Network Centric Warfare, W3C, World Wide Web Consortium 16. PRICE CODE
17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

UTILIZATION OF WEB SERVICES TO IMPROVE
COMMUNICATION OF OPERATIONAL INFORMATION

David S. Lowery

Captain, United States Marine Corps
B.S., Valdosta State University, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2004

Author: David S. Lowery

Approved by: Don Brutzman

Thesis Advisor

Research Associate Curtis Blais
Thesis Co-Advisor

Dr. Peter Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Currently under development, the Global Information Grid (GIG) Enterprise

Services (ES) is a suite of capabilities intended to provide improved user access to

mission-critical data via Web-based and network technologies. Some of the problems of

implementing such capabilities include non-uniform data formats, incompatible run-time

environments and nonstandard proprietary applications, all of which block operational

interoperability.

Web services are specifically designed to address the interoperability challenges

of a service-oriented architecture (SOA) such as the GIG. SOAs are networked

infrastructures that are designed to facilitate the interoperability of collections of services

without requiring service context awareness. Standards-based Web services provide the

necessary flexibility and extensibility to ensure information flow is platform, run-time

and software independent.

The proof of concept (POC) software example developed for this research

demonstrates the flexibility and extensibility of standards-based, operating-system-

independent Web services. The result is an experimental endeavor to provide a mock

operation command center information portal, which provides a notional summary

personnel status report to the commander in real-time from a Web service that was

originally generated by a stand-alone client/server system. The POC is developed with

great attention to open-source technologies and open-standards compliance. The key

technologies involved are Extensible Markup Language (XML), the Java programming

language, PHP: Hypertext Preprocessor (PHP) scripting language and Simple Object

Access Protocol (SOAP).

This work demonstrates the benefits of leveraging Web services to unlock legacy

specialized applications to enhance the Warfighter’s battlespace awareness by improving

information flow via a Web based information portal.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OVERVIEW...1
B. PROBLEM SPACE ...2
C. MOTIVATION ..3

1. Personal Background...3
2. The Need for Improved Integration and Extensibility.....................4
3. The Need for Web-based Interoperable Solutions............................5

D. THESIS ORGANIZATION..5

II. RELATED WORK ..7
A. INTRODUCTION..7
B. CURRENT OPEN SOURCE WEB SERVICE STANDARDS

ORGANIZATIONS ...7
1. World Wide Web Consortium (W3C) ...7
2. Web Services Interoperability (WS-I) Organization........................9
3. Organization for the Advancement of Structured Information

Standards (OASIS) ..9
C. JAVA-BASED WEB SERVICES...10
D. BRIEF TECHNICAL ASSESSMENT OF WEB SERVICES...................11

1. Problem Resolution Through Maturing Standards and
Technology..11

2. Defining Web Services...12
3. Best Practices..12
4. Extensibility is Crucial ..13
5. Web Service Usage...13

E. SUMMARY ..14

III. THE GLOBAL INFORMATION GRID (GIG) ...15
A. INTRODUCTION..15
B. THE CONCEPT OF GRID COMPUTING ..15
C. A JOINT WARFIGHTING PERSPECTIVE ON THE CONCEPT OF

NETWORK-CENTRIC WARFARE...16
D. GIG COMPOSITION ...18

1. Global Information Grid Enterprise Services (GIG ES)20
2. Multiple Services Provided by a Single System21

E. THE WARFIGHTER’S PERSPECTIVE ...23
F. SUMMARY ..26

IV. DEVELOPMENT OF THE PROOF OF CONCEPT (POC) EXEMPLAR27
A. INTRODUCTION..27
B. RESEARCH AND DEVELOPMENT METHODOLOGY27
C. DEVELOPMENT AND TESTING PLATFORMS....................................28
D. DATA REQUIREMENTS ..30

 viii

1. Personnel Reporting (G1)..30
E. WEB SERVICE IMPLEMENTATION ..30

1. Service Providers ...30
a. Client Application ...31
b. Server Application...35
c. Server Web Service..39
d. Parser Web Service ...42
e. Transformation Web Service ..43

2. Service Requesters ...43
a. Basic Client ...44
b. Parser Client..45
c. Transformation Client ..46

F. WEB PORTAL/REPORT IMPLEMENTATION......................................47
G. SUMMARY ..48

V. PROOF OF CONCEPT (POC) EXEMPLAR RESULTS49
A. INTRODUCTION..49
B. WEB SERVICE EMPLOYMENT...49
C. OPERATING-SYSTEM INDEPENDENCE...50
D. INTEROPERABILITY...52
E. PARSER FUNCTIONALITY...53
F. SUMMARY ..53

VI. CONCLUSIONS AND RECOMMENDATIONS...55
A. CONCLUSIONS ..55
B. RECOMMENDATIONS FOR FUTURE WORK......................................57

1. XML-Based Authentication and Authorization Technologies57
2. Web-Service Based Common Operating Picture (COP)................58
3. Web Service Discovery ..59

APPENDIX A – CLIENT CLASS..61

APPENDIX B – CONNECTION CLASS..75

APPENDIX C – SERVER CLASS...85

APPENDIX D – PARSER WEB SERVICE CLASS..95

APPENDIX E – TRANSFORMATION WEB SERVICE CLASS101

APPENDIX F – PHP CLIENTS...107

BIBLIOGRAPHY..109

INITIAL DISTRIBUTION LIST ...113

 ix

LIST OF FIGURES

Figure 1. This conceptual abstraction of a Network-Centric Warfighting construct
connects common key warfighting elements, such as sensors, shooters and
command and control, in order to allow better command and control and
facilitate decision-making. (From Joint Publication 6.0: Doctrine for C4
Systems Support to Joint Operations, Figure II-4) ..16

Figure 2. The previous conceptual abstraction is easily translated into three sub-
architectures: an Information Grid, a Sensor Grid and an Engagement
Grid. This figure highlights the network-centric information flow between
sensors, command and control and shooters. (From:
http://www.dtic.mil/jcs/j6/education/warfare.html, September 2004)17

Figure 3. This example Operational Architecture for Network-Centric Warfare
integrates a mission specific Sensor Grid and a mission specific
engagement grid to enable Precision Engagement of Air Defense targets.
(From: http://www.dtic.mil/jcs/j6/education/warfare.html, September
2004) ..18

Figure 4. The GIG ES provides the necessary services to bridge the Transport layer
and the Application layer and consists of services such as electronic mail,
application hosting and weapon-target pairing. (From:
http://ges.dod.mil/about/solution.htm, September, 2004)................................19

Figure 5. Net-Centric Enterprise Services (NCES) are the basis of GIG ES and
consists of those core services that are relevant to all users. NCES will
also contain extended service sets that are community specific, which are
called Community of Interest (COI) services. (From:
http://ges.dod.mil/about/solution.htm, September 2004).................................20

Figure 6. A Grid based application designed to provide multiple services can output
XML data from its internal data source as well as also implementing
several user interfaces that output HTML, portlets or Personal Digital
Assistant (PDA) data. (From: Assistant Secretary of Defense for
Networks and Information Integration (ASD/NII), GES-CES-Strategy,
Draft Version 1.1) ..22

Figure 7. Specialized services can extend existing services providing added value
for all users and communities. (Assistant Secretary of Defense for
Networks and Information Integration (ASD/NII), GES-CES-Strategy,
Draft Version 1.1) ..23

Figure 8. The GIG architecture ensures users have access to any and all resources
facilitating the transition from a “need-to know” methodology to a “need-
to-share” methodology. (Network-Centric Operations and Warfare
Reference Model, Draft Version 0.9) ..24

Figure 9. The Warfighter Information Network – Tactical (WIN-T) is a transport for
the GIG. This figure provides a graphical representation of the

 x

implementation from the WIN-T Operational Requirements Document
(ORD). (Original source: Appendix k, Tab A to WIN-T ORD)....................25

Figure 10. The FCS is a Joint networked system of systems, composed of eighteen
subsystems, that uses the WIN-T platform as a backbone for its network
infrastructure. (From presentation titled: “GIG from a Warfighter
Perspective” authored by Wayne A. Van Dine, Jr., see Van Dine in the
bibliography for more details) ...26

Figure 11. The target architecture for the proof of concept (POC) example depicted
here is intended to demonstrate the flexibility and platform independent
nature of Web services...29

Figure 12. The “Locate File” dialog box is used to open a local file................................31
Figure 13. The “Current File” tabbed pane allows the user to view the selected

comma separated file. ..32
Figure 14. The connection dialog is designed to allow the user to enter the Internet

Protocol address and port number of the server...33
Figure 15. The “Get File From Server” tabbed pane allows the user to select a file

from the server. ..34
Figure 16. Retrieved data is viewed in the “Get File From Server” tabbed pane.35
Figure 17. The server graphical front-end is displayed when the server is running.36
Figure 18. The control statement used by the server determines which operation to

perform based on the message received from the client.37
Figure 19. The server displays the Base-64 encoded file sent by the client......................38
Figure 20. The server “decode” method is exposed as a Web service and provides the

basic services for retrieving data from the server. ...39
Figure 21. This screenshot shows Apache-SOAP running as a Web Application under

Tomcat. ..40
Figure 22. The Apache SOAP Admin page is used to manage service deployment

description configurations..40
Figure 23. This screenshot shows the service deployment descriptor ID and methods

list configuration form. These parameters are used to create the service
deployment descriptor file used by SOAP...41

Figure 24. The service deployment descriptor configuration form requires a Java
Provider as well..41

Figure 25. When the Web portal client is used to submit a request to the basic client,
the results are displayed as text in a new browser window.44

Figure 26. The second service implemented parses the text and converts it into XML.
The Firefox Web browser renders to resulting XML output from the parser
service without the XML tree. Firefox implements XML parsing and
rendering in a different manner than Internet Explorer.45

Figure 27. Although the results from the parser are the same as before, Internet
Explorer renders the resulting XML output as an XML tree. This is
specific to the Internet Explorer...46

Figure 28. The last service implemented uses XSLT to transform XML into an
HTML table containing a Summary Personnel Status Report as shown in
Firefox..47

 xi

Figure 29. As previously identified this sample deployment architecture for the proof
of concept demonstrates the flexibility of Web services. The Java
applications are deployable on Windows and Linux and the services
function properly over a network...50

Figure 30. Much effort was made to utilize open-source technologies during the
conduct of this research. The Web server of choice for the proof of
concept was Apache on both Windows and Linux. These statistics
represent the market share for top servers across all domains from
September 1995 to September 2004, which demonstrates the ubiquity of
Apache. (From:
http://news.netcraft.com/archives/web_server_survey.html, September
2004). ..51

Figure 31. Each button of the G1 Web portal calls a service designed to return
specific data to demonstrate the capabilities of each service. Each service
represents a stepping-stone of the final product. ...52

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ABBREVIATIONS, ACRONYMS AND SYMBOLS

API Application Programming Interface

ASP Active Server Pages

C4ISR Command, Control, Communications, Computers,

Intelligence, Surveillance and Reconnaissance

COI Community of Interest

COM/DCOM Component Object Model/Distributed Component Object

Model

COP Common Operating Picture

CORBA Common Object Request Broker Architecture

CSV Comma Separated Value

DCE Distributed Computing Environment

DOM Document Object Model

EJB Enterprise Java Beans

E-mail Electronic Mail

ES Enterprise Services

FCS Future Combat Systems

GIG Global Information Grid

HTML Hypertext Markup Language

JAXB Java Architecture for XML Binding

JAXP Java API for XML Processing

JAXR Java API for XML Registries

JAX-RPC Java API for XML Based RPC

JSF Java Server Faces

JSTL Java Server Pages Standard Tag Library

JWSDP Java Web Services Developer Pack

MOL Marine Online

NCES Network Centric Enterprise Services

NCOW RM Network Centric Operations and Warfare Reference Model

 xiv

OASIS Organization for the Advancement of Structured

Information Standards

ORD Operational Requirements Document

PDA Personal Digital Assistant

PEAR PHP Extension and Application Repository

PHP PHP: Hypertext Preprocessor

POC Proof of Concept

SAAJ SOAP with Attachments API for Java

SIPRNET Secret Internet Protocol Router Network

SME Subject Matter Expert

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SOM/DSOM System Object Model/Distributed System Object Model

SOP Standing Operating Procedure

TCP Transmission Control Protocol

TO Table of Organization

TPED Task, Process, Exploit and Disseminate

TPPU Task, Post, Process and Use

UD/MIPS Unit Diary/Marine Integrated Personnel System

UDDI Universal Description, Discovery and Integration

URI Uniform Resource Identifier

URL Uniform Resource Locator

VRML Virtual Reality Modeling Language

W3C World Wide Web Consortium

WIN-T Warfighter Information Network - Tactical

WS-CDL Web Services Choreography Description Language

WSDL Web Services Description Language

WS-I Web Services Interoperability

X3D Extensible 3D Graphics

X-KISS XML Key Information Service Specification

 xv

XKMS XML Key Management Specification

X-KRSS XML Key Registration Service Specification

XML Extensible Markup Language

XMLP XML Protocol

 xvi

THIS PAGE INTENTINALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

The author would like to acknowledge and give thanks to the following:

Cryptographic Research Laboratory manager Nathan Beltz; Nathan consistently

provided the necessary equipment and support throughout the course of the research.

Applied Technology Division, National Security Agency for funding the research.

Research Associate Curtis Blais; Curt’s enthusiasm was always uplifting and

infectious. He became the sounding board for many of the author’s rantings, always

doing his very best to provide time to support his students.

I would like to give a very special thanks to my wonderful Wife, Melissa and our

three beautiful children, Brandon, Hunter and Cody for their unwavering support and

love.

And finally, I would like to thank our Lord and Savior, Jesus Christ. Through

Jesus, all things are possible.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. OVERVIEW
Currently under development, the Global Information Grid (GIG) Enterprise

Services (ES) is a suite of capabilities intended to provide improved user access to

mission-critical data via Web-based and network technologies. Some of the problems of

implementing such capabilities include non-uniform data formats, incompatible run-time

environments and nonstandard proprietary applications, all of which block operational

interoperability.

Web services are specifically designed to address the interoperability challenges

of a service-oriented architecture (SOA) such as the GIG. SOAs are networked

infrastructures that are designed to facilitate the interoperability of collections of services

without requiring service context awareness. Standards-based Web services provide the

necessary flexibility and extensibility to ensure information flow is platform, run-time

and software independent.

The proof of concept (POC) software example developed for this research

demonstrates the flexibility and extensibility of standards-based, operating-system-

independent Web services. The result is an experimental endeavor to provide a mock

operation command center information portal, which provides a notional summary

personnel status report to the commander in real-time from a Web service that was

originally generated by a stand-alone client/server system. The POC is developed with

great attention to open-source technologies and open-standards compliance. The key

technologies involved are Extensible Markup Language (XML), the Java programming

language, PHP: Hypertext Preprocessor (PHP)1 scripting language and Simple Object

Access Protocol (SOAP).

This work demonstrates the benefits of leveraging Web services to unlock legacy

specialized applications to enhance the Warfighter’s battlespace awareness by improving

information flow via a Web based information portal.

1 PHP is considered a recursive acronym. The acronym “PHP” is itself a part of the literal name. See

http://www.php.net/manual/en/introduction.php for more information.

http://www.php.net/manual/en/introduction.php

2

B. PROBLEM SPACE
Timeliness of information has always been key to a commander’s critical

decision-making. The systems currently used to assist in that process are unable to

provide a comprehensive perspective of the battlespace in real-time, nor does the current

architecture support proper and necessary staff integration, which requires the sharing

and accessibility of information across the entire staff.2 This research addresses some of

the overarching shortcomings of proprietary, closed source systems that can ultimately

require contractor lock-in or in some cases just become unsupportable.

This research assumes that one priority of technological improvement is to aid

humans with tasks that otherwise require greater effort, manpower and in many cases

expertise. For the purposes of this research the author focuses on information

management capabilities and limitations. Today’s computer systems are extremely

efficient at processing massive amounts of data. The improvements in hardware,

software and network technology allow for storage, management and access of

information from many local and remote resources simultaneously. However, the

manner in which these information management assets are implemented is the source of

the problem this research addresses. This paper examines corporate “best practices” and

draws conclusions pertaining to which implementations can benefit military

organizations.

The resulting POC is based on standards specified under the World Wide Web

Consortium (W3C) and the Organization for the Advancement of Structured Information

Standards (OASIS). Specifically, the Web service architecture is based on requirements

set forth by the Web Services Architecture Working Group.

For the most part, current practices within the Marine Corps require several

software applications to gather and correlate relevant data. For example, within Marine

Corps Personnel and Administration the system used to maintain personnel data is the

Unit Diary/Marine Integrated Personnel System (UD/MIPS)3. The data is maintained on

an IBM 3270 mainframe in a proprietary format such that even though commanders have

2 This statement is an opinion based on the author’s experience as the I MEF Personnel Officer and is
the premise for this research.

3 For more information on UD/MIPS see: http://www.missa.manpower.usmc.mil

3

access via a closed source client, it provides virtually no ability to integrate that data with

any other report. If a commander needs to create a report utilizing the data in UD/MIPS

it is necessary to manually extract the data and import into another application such as

Microsoft Excel. If the report is needed by “higher” then it is reformatted, if necessary,

to their specification and forwarded via email or formal message.

The POC Web service based architecture is also used to explore how to extend

legacy systems and improve data integration via a network without needing to completely

re-architect the existing infrastructure.

Other assumptions are identified and qualified within the conclusions drawn from

this research in Chapter VI.

C. MOTIVATION
The motivation behind this thesis is to improve the commander’s ability to

quickly and efficiently utilize all of the systems at his or her disposal, locally or remotely,

to see any and all data relevant to the battlespace as close to real-time as practicable. The

research explores how Web services may be used to enhance our capabilities to migrate

and integrate data from legacy and proprietary systems virtually in real-time into an

environment such as a web-based reporting portal.

1. Personal Background
The following is provided to establish some context for the information within

this document. This also addresses the author’s personal motivation behind this research.

The author’s first duty assignment coincided with a significant reduction in

manpower within the Personnel and Administration field, which led to consolidation of

administration assets and a very quick push to develop software tools to automate many

administrative requirements. This was typically driven by a higher echelon command

and the results were not necessarily beneficial to lower-level commands.4

As a result of experiences from his first assignment the author developed a

significant sensitivity to the manpower issues of the subordinate commands and elements.

Therefore, upon reassignment to a higher command, he made every effort to lighten their

4 Upon commissioning the author was assigned to 1st Maintenance Battalion, 1st Force Service Support
Group (FSSG) as Adjutant for about one and a half years and subsequently assigned to First Marine
Expeditionary Force Command Element (I MEF CE) as Personnel Officer for about two and a half years.

4

burden whenever possible. The tools that were available were definitely more capable

but were still often inadequate and required a great deal of manual intervention to

accommodate the needs. For example, there have been great strides made toward

improving access to, and use of, the data maintained by the personnel reporting system

UD/MIPS in the form of Marine Online (MOL)5. However, the information is still not

easily utilized to accommodate many of the reporting requirements an administrator is

responsible for.

Although some of the former commentary has pertained to a particular system and

its limitations, this research does not demonstrate how any specific system can be

improved by implementing Web services, rather it demonstrates how, conceptually, any

application can be extended to provide more robust and flexible services.

2. The Need for Improved Integration and Extensibility
Within any military organization there are many reporting requirements, whether

peacetime or wartime, which have to be processed in order to maintain a necessary state

of readiness. Some of these requirements have routine submission deadlines but many do

not. Typically the information submitted is gathered via proprietary client/server

applications that are networked together as in the UD/MIPS example above.

The military faces numerous constraints and limitations as a result of systems and

applications that are not extensible and do not integrate. This is obvious across all

sections of a military staff. Today, when a commander is briefed, the data provided is

usually based on information gathered within a given time period, which can often be

several hours old. The information comes to the command center via many methods.

Personnel reporting is typically done via electronic mail (E-mail) with spreadsheets.

Some Intel systems provide data in a more timely manner but still require subject matter

experts (SMEs) to extract relevant data and manually update other reports to provide the

commander, as well as higher, with an accurate common operating picture (COP).

The scope of this research involves answering the following:

5 Marine Online (MOL) at https://tfas.mol.usmc.mil/TFAS/login.do is a personnel administration web

site designed to allow individual Marines access to their personnel information.

5

• What type of data is needed for the POC? Details are provided in Chapter
IV.

• How operating-system independent are Web services? This is
demonstrated through the POC and is discussed in Chapter IV.

• What are the keys to Web service interoperability? This is addressed in
the technical assessment portion of Chapter II.

• What are the keys to successful implementation in a military operational
environment? This is discussed in Chapters V and VI.

• What software is required? This is discussed in chapter IV.

• What mechanisms can be implemented to aid in addressing security issues
such as authentication and authorization? This is addressed in Chapter VI.

3. The Need for Web-based Interoperable Solutions
The significance of a Web-based interoperable solution is that it provides the

flexibility necessary to build an architecture without a “single point of failure.” It also

utilizes standards that have been tested in a dynamic corporate environment, which

provides the benefit of lessons learned. The Web provides redundancy and global

reachability.

This approach also provides scalability, allowing for implementation on smaller

networks that are bridged and secure as well as large networks that have complete access

to the Internet or Secret Internet Protocol Router Network (SIPRNET) for secure

operations.

D. THESIS ORGANIZATION

Chapter II provides background information pertaining to the technologies and

protocols researched and employed in the POC as well as a brief technical assessment of

the status of Web service “best practices.”

Chapter III is devoted to explaining the concepts behind the GIG, Grid computing

and Network-Centric Warfare.

Chapter IV details the development of the POC. The functionality of each

component is explored in depth. The goal of this chapter is to ensure a proper

understanding of each component’s role in the overall architecture.

6

Chapter V discusses the results of the research and the POC. The development

process yielded lessons learned about design considerations, interoperability issues and

efficiency concerns.

7

II. RELATED WORK

A. INTRODUCTION
This chapter covers technical details and background of technologies utilized in

development of the POC. Since the POC involves Java, SOAP, and XML, W3C and the

Web Services Interoperability (WS-I) organization as well as Sun Java are discussed

below. Although not implemented in the POC, Universal Description, Discovery and

Integration (UDDI) is briefly discussed in order to provide some background information

for possible future work.

Finally, this chapter concludes with a brief technical assessment of the technology

behind today’s Web service implementations. The technical assessment addresses three

main areas of concern: what is a Web service, how is a Web service used and how can it

improve the operational picture for the commander.

B. CURRENT OPEN SOURCE WEB SERVICE STANDARDS
ORGANIZATIONS

1. World Wide Web Consortium (W3C)
The W3C is the standards organization that maintains and contributes work to

standards significant to interoperable communication over the World Wide Web. W3C

has been crucial in the development and maintenance of many key protocols and

specifications such as Hypertext Markup Language (HTML), Document Object Model

(DOM), SOAP, XML and over 50 other recommendations.

The W3C organization is comprised of several Activities, each of which

maintains its own structure typically consisting of multiple Working Groups, Interest

Groups and Coordination Groups. It is from within these activities that the groups

usually produce recommendations and technical reports. Of specific interest to this thesis

is the work contributed by the Web Services Activity. All work pertaining to Web

services is managed as part of W3C’s Architecture Domain. The Web Services Activity

structure consists of three Working Groups and an Interest Group, which are all

coordinated by a single Coordination Group: (W3C, September 2004)

8

• XML Protocol Working Group

• Web Services Description Working Group

• Web Services Choreography Working Group

• Semantic Web Services Interest Group

The XML Protocol Working Group maintains several documents relevant to this

thesis. Specifically relevant are the XML Protocol (XMLP) Requirements working draft

document and SOAP specification. Development of the POC involves the use of SOAP

and XML fairly extensively. XML is the fundamental language used as the basis for the

extensibility of Web services and the implementation of SOAP. SOAP is the protocol

used to communicate between SOAP processors over the network commonly bound to

such protocols as HTTP and XML-RPC over Transmission Control Protocol (TCP). A

SOAP message consists of several pieces. Generally speaking there is the SOAP

Envelope, which is the outer most element, the SOAP Header and SOAP Body. (Web

Services Description Working Group, 3 August 2004)

The Web Services Description Working Group maintains the working draft of the

Web Services Description Language (WSDL) specification. WSDL is designed to

provide an XML language for describing Web services. Typically this is used to

document the details of how a service requester can properly interface with a service

provider and is commonly included with the UDDI registration of a specific service.

(UDDI, September 2004)

The Web Services Choreography Working Group maintains the working draft of

the Web Services Choreography Description Language (WS-CDL). WS-CDL is an

XML-based language that is designed to facilitate peer-to-peer collaborations of Web

services participants by defining their common and complementary observable behavior.

The end result ensures ordered message exchanges accomplish a common business goal.

Although these are the only working groups from W3C discussed here, there are

many other Activities within the W3C that provide critical technology to the development

9

and advancement of Web services, such as the Semantic Web Activity, the XForms

Activity, the XML Encryption Activity and the XML Activity just to name a few. (W3C,

September 2004)

2. Web Services Interoperability (WS-I) Organization
The WS-I organization is an industry effort intent on promoting Web services

interoperability across platforms and programming languages. WS-I provides a

community of members consisting of software vendors of all sizes, enterprise customers

and essentially any others interested in furthering Web services interoperability. (WS-I,

September 2004)

As an example of the criticality of the WS-I Basic Profile we can look at two

separate but common Web service development platforms, .NET and Java. Prior to the

WS-I Basic Profile, services developed under .NET yielded implementations that were

not necessarily properly accessible from a requester developed in Java due to the

nonstandard manner in which service request processing occurred. With the WS-I Basic

Profile and current tools contributed by WS-I, it is possible to ensure a specific level of

conformance and hence improved interoperability. The WS-I Basic Profile does not

provide a guarantee of total interoperability but it does address the most common

problems that implementation experience has revealed to date. (Ballinger, Keith et al, 24

August 2004)

3. Organization for the Advancement of Structured Information
Standards (OASIS)

OASIS is fundamentally focused on electronic business (e-business) advancement

through well defined worldwide standards for security, Web services, conformance,

business transactions, supply chain, public sector and interoperability within and between

the marketplace. (OASIS, September 2004)

OASIS is responsible for many specifications that are significant to the overall

development of a total Enterprise-level Web service solution, for the purposes of this

research the primary standard of interest is the UDDI specification. UDDI is a collection

of searchable web-based registries that allows entities to publish information about

themselves. The UDDI registry contains Yellow Pages, White Pages and Green Pages.

Yellow Pages contain registration classification information about the business entities or

10

their services under different categories. White Pages contain listings of the existing

business entities. Green Pages provide technical information on how to invoke a certain

service. The end result is a searchable registry that allows service consumers the ability

to locate specific services and requirements pertaining to their employment. There are

many proprietary UDDI registry solutions available on the market today. Due to the

work of the OASIS UDDI Specification Technical Committee there is a single standard

that most UDDI registries try to abide by. As of this writing the UDDI version 2

specification has been promoted as an OASIS standard with version 3 in revision.

(UDDI, September 2004)

C. JAVA-BASED WEB SERVICES
There are two significant reasons Java was chosen as the basis for development of

the POC example in this thesis:

1. It has a well supported and mature Application Programming Interface

(API) for developing network programs, and the latest release of the Java Web Services

Developer Pack (JWSDP 1.3) is a complete Web services development platform.

2. Java, although not open source as of this research, is a freely distributed

API and run-time environment and runs on all OSs of interest.

JWSDP 1.3 needs further description as this is considered one of the most

significant toolkits available for developing Web services due to its comprehensive

nature. The JWSDP consists of the following: (JWSDP, September 2004)

• Java Server Faces (JSF) v1.0 EA4 – a standard specification for
building User Interfaces (UI) for server-side applications.

• XML and Web Services Security v1.0 EA2 – used to secure SOAP
messages.

• Java Architecture for XML Binding (JAXB) v1.0.2 FCS – binds
XML schemas to Java representations.

• Java API for XML Processing (JAXP) v1.2.4 FCS – enables
applications to parse and transform XML documents.

• Java API for XML Registries (JAXR) v1.0.5 FCS – provides a
uniform and standard Java API for accessing different kinds of
XML registries.

11

• Java API for XML-based Remote Procedure Calls (JAX-RPC)
v1.1 FCS – provides XML-based RPC capability to Web
applications.

• SOAP with Attachments API for Java (SAAJ) v1.2 FCS – provides
a standard method of sending XML documents over the Internet
from a Java platform.

• Java Server Pages (JSP) Standard Tag Library (JSTL) v1.1 EA – a
tag library designed to encapsulate many of the common core
functionalities found in Web applications.

• Java WSDP Registry Server v1.0_06 FCS – a Java-based UDDI
registry implementation.

• Ant Build Tool 1.5.4 FCS – a Java based build tool.

• Apache Tomcat v5.0 EA development container – Tomcat is a
Java servlet container that allows for the deployment of Java based
applications as services on a network.

JWDSP has been tested on the following OSs with Java 2 Standard Developer

Kit, Standard Edition, versions 1.4.1_xx and 1.4.2_xx:

• Sun Solaris Operating Environment 8 and 9, and Sun Solaris 9 for
X86

• Windows 2000 Professional Edition

• Windows XP Professional Edition

• RedHat Linux 8.0P

Much has been contributed to JWSDP from open source organizations such as the

Apache Software Foundation (ASF) T

6
T, which maintains active development of Ant and

Tomcat.

D. BRIEF TECHNICAL ASSESSMENT OF WEB SERVICES

1. Problem Resolution Through Maturing Standards and Technology
As XML and Web services as a whole mature, their uses are becoming

increasingly prevalent throughout the Internet. The extensibility and flexibility of Web

service implementation is well suited to deployment in today’s global, internet-driven

T

6
T More information on the Apache Software Foundation can be found at http://apache.org

12

business commerce and government service provisioning. In the past ten years or so,

many distributed technologies such as Distributed Computing Environment (DCE) (The

Open Group, September 2004), System Object Model/Distributed System Object Model

(SOM/DSOM) (Webopedia, September 2004), Common Object Request Broker

Architecture (CORBA) (Object Management Group, September 2004), Enterprise

JavaBeans (EJBs) (J2EE, Sun Java, September 2004), Component Object

Model/Distributed Component Object Model (COM/DCOM) (Microsoft, September

2004) and others, have been developed to address specific interoperability needs on the

Internet. However, Web services provide organizations the ability to address such a wide

range of needs that its use is quickly changing the way business is being done across the

Internet, which is promoting standards development for its component protocols.

2. Defining Web Services
So, what is a Web service? Until recent years this question has led to many

arguments among technical experts. Some argued that any technology that utilized the

Web to provide a service is a Web service. This description included such architectures

as database driven Web sites that deliver dynamic content on demand utilizing such

technologies as Microsoft’s Active Server Pages (ASP) or the widely used PHP scripting

language, both of which can be embedded within HTML when creating Web sites. There

are many other technologies, which are considered to provide Web services, that utilize

protocols such as Transmission Control Protocol/Internet Protocol (TCP/IP) that drive

today’s Internet. For the purposes of this research, a Web service is defined by the

W3C’s definition:

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its
description using SOAP-messages, typically conveyed using HTTP with
an XML serialization in conjunction with other Web-related standards.
(Haas, 11 February 2004)

3. Best Practices
It is not uncommon for new technologies to have implementations rushed to

market without a mature, agreed-upon standard method of implementation. As an

example, consider two typically competing technologies that are common platforms for

13

implementing Web services: Sun’s Java and Microsoft’s .NET architecture. Even

though Web services are supposed to support interoperability, each of these development

platforms has a unique manner of effecting Web service implementations, so that a .NET

service requester is not consistently able to communicate with a Java-based service

provider. This type of issue, along with many others, was the motivation for large

industry participants organizing the WS-I organization, which released the final WS-I

Basic Profile 1.1 on August 24, 2004 (Ballinger, 24 August 2004). Hopefully this and

related progress will lead to interoperable best practices that align with W3C

recommendations.

4. Extensibility is Crucial
Even with XML’s extensibility, Web services are not likely to solve every

business process problem. There are many issues and concerns about Web services

deployment that still need to be resolved. Some are a part of the natural evolution of an

innovation but others are a part of the basic nature of technology. The maturity of the

technology has to keep up with rapidly changing Internet infrastructure. However,

because of its flexibility, it is likely to evolve and sustain better than most other

technologies attempting to provide similar capabilities. WS-I is likely to play a key role

in extending Web services beyond inter-organizational use to individual users as well.

5. Web Service Usage
Considering the flexibility associated with a Web service architecture,

implementation could be very extensive. In an effort to provide scope for the POC this

research implements Web services in such a manner as to integrate data from different

sources into a single reporting mechanism. These different sources, or applications,

mimic systems that are otherwise unable to communicate with each other and therefore

are not able to share data. Web services operate across different OSs utilizing an intranet

to demonstrate interoperability and flexibility. The POC also consists of Web services

that are of different technologies. Web services facilitate access to data created and/or

maintained by a Java application. More detail is given in chapter IV. The final POC

provides a seamless integration of data quickly allowing the commander to access a real-

time information summary.

14

E. SUMMARY
This chapter provided background information pertaining to the technologies and

standards utilized during the development of the POC and presented a brief technical

assessment of Web services.

15

III. THE GLOBAL INFORMATION GRID (GIG)

A. INTRODUCTION
The concept of Grid computing provides the ability to combine the computing

power of many networked computers. This concept is being realized in the form of the

Department of Defense’s (DoD) GIG initiative to facilitate the needs of Net-Centric

Warfare.

B. THE CONCEPT OF GRID COMPUTING
Grid computing is the progression of networked computers into a seamlessly

integrated, virtual computing space with shared resources providing unprecedented

computing power, services and information with incredible collaborative capability.

Although the Internet has provided a means to allow computers to communicate, the

concept of Grid computing enables computers to work together. One of the primary

tenets of Grid computing is that it is capable of connecting heterogeneous computing

platforms and data sources such that they appear to the end-user as a single computing

system and data store.

One application of Grid computing implements software that allows networked

computers to be used by researchers to process enormous volumes of data. The software

can potentially coordinate the processing of thousands of personal computers; each doing

a small part, that when combined provides enormous computational power. The

computational power realized is often faster and more efficient than monolithic

supercomputers (Walker et al 2004, 3).

The previous example was a limited representation of Grid computing and does

not demonstrate the full capacity of available capabilities. The concept of the GIG better

represents the potential of Grid computing with the application of Network-Centric

Warfare and Network-Centric Information Operations on a Grid computing architecture.

Grid computing provides the performance, capacity and adaptability that is required to

advance Command, Control, Communications, Computers, Intelligence, Surveillance,

and Reconnaissance (C4ISR) systems integration in order to better task, process, exploit

and disseminate (TPED) the enormous amounts of data provided from modern sensors

and open sources (Walker et al. 2004, 4). Fully implementing these capabilities in the

GIG architecture also facilitates the transition from the TPED process to a task, post,

process and use (TPPU) paradigm, which is discussed in greater detail later. (“The

Solution”, September 2004)

C. A JOINT WARFIGHTING PERSPECTIVE ON THE CONCEPT OF
NETWORK-CENTRIC WARFARE
Network-Centric Warfare is an implementation of Grid computing specifically

focusing on linking command and control, sensors and shooters together to increase Joint

combat power. Network-Centric Warfare has emerged as a result of the development of

programming languages, protocols and standards that allow for platform independent

communication such as, HTTP, XML and Java. Figure 1 shows a conceptual abstraction

of a Network-Centric Warfighting construct connecting common key warfighting

elements, such as sensors, shooters and command and control, in order to allow better

command and control and facilitate decision-making.

Figure 1. This conceptual abstraction of a Network-Centric Warfighting construct

connects common key warfighting elements, such as sensors, shooters and
command and control, in order to allow better command and control and facilitate
decision-making. (From Joint Publication 6.0: Doctrine for C4 Systems Support

to Joint Operations, Figure II-4)

16

As shown in Figure 2, the previous conceptual abstraction is easily translated into

three sub-architectures: an Information Grid, a Sensor Grid and an Engagement Grid.

The Information Grid is the fundamental building block consisting of both military and

commercial communication capabilities providing the necessary network infrastructure to

ensure proper resource connectivity and enables the Sensor Grid to generate battlespace

awareness. The Sensor Grid consists of the assets necessary to provide the Joint Force

Commander the necessary awareness across the Joint battlespace. These assets are

represented by sensor peripherals and sensor applications. Sensor peripherals consist of

space, air, ground, sea and cyberspace based sensors as well as embedded sensors that

facilitate tracking levels of consumables such as fuel and munitions. The Sensor Grid

applications are those applications required by the sensor platforms. The Engagement

Grid takes advantage of the benefits of the improved battlespace awareness provided by

the Sensor Grid and allows the Joint Forces Commander the ability to maximize the

employment of forces.

Figure 2. The previous conceptual abstraction is easily translated into three sub-

architectures: an Information Grid, a Sensor Grid and an Engagement Grid. This
figure highlights the network-centric information flow between sensors, command

and control and shooters. (From:
http://www.dtic.mil/jcs/j6/education/warfare.html, September 2004)

17

http://www.dtic.mil/jcs/j6/education/warfare.html

Figure 3 represents an emerging operational architecture for Network-Centric

Warfare representing the integration of a mission specific Sensor Grid and a mission

specific Engagement Grid. The employment of this operational architecture increases

Joint combat power and effectiveness as a result of a combination of the Sensor Grid’s

ability to provide increased battlespace awareness and the Engagement Grid’s capability

to exploit it. (Net-Centric Warfare, September 2004)

Figure 3. This example Operational Architecture for Network-Centric Warfare

integrates a mission specific Sensor Grid and a mission specific engagement grid
to enable Precision Engagement of Air Defense targets. (From:

http://www.dtic.mil/jcs/j6/education/warfare.html, September 2004)

D. GIG COMPOSITION

18

The GIG is designed to apply the concepts of Network-Centric Warfare to a Grid

computing architecture. The GIG provides more capability than just increased

battlespace awareness. Figure 4 shows the GIG architecture consisting of a Domain

layer, Application layer, GIG ES layer, Transport layer and Management layer. The

Management layer consists of such things as doctrine, governance, policy, standards,

architecture and engineering, which establish the business processes and guide

implementation. The Transport layer encompasses the physical infrastructure consisting

http://www.dtic.mil/jcs/j6/education/warfare.html

of such systems as the Defense Information Systems Network, Joint Tactical Radio

System and Transformational Communications System. The GIG ES is designed to

simplify resource access to eligible users facilitating information and decision superiority

in every situation. The GIG ES provides the necessary services to bridge the Transport

layer and the Application layer and consists of services such as electronic mail,

application hosting and weapon-target pairing. The Application layer consists of those

user applications necessary to acquire, process and use information and services such as

the Deployable Joint C2 Program and the Business Management Modernization Program.

Finally, at the top is the Domain layer, which determines the scope of deployment and

usage of services. (“The Solution”, September 2004)

Figure 4. The GIG ES provides the necessary services to bridge the Transport layer

and the Application layer and consists of services such as electronic mail,
application hosting and weapon-target pairing. (From:

http://ges.dod.mil/about/solution.htm, September, 2004)

19

http://ges.dod.mil/about/solution.htm

1. Global Information Grid Enterprise Services (GIG ES)
The DoD is transitioning from a centralized TPED paradigm of planning to a net-

centric TPPU paradigm of planning, employing information technology and connectivity

to allow consumers to “pull” the information necessary to accomplish their mission. This

is a significant shift from the previous methodology, which required the consumer to

specifically identify its needs to the producer and depend on the producer to

accommodate those needs. GIG ES is designed to facilitate that transition by providing

the services necessary to meet the information needs of every authorized user across the

DoD. Currently the focus of development is on those core services, referred to as Net-

Centric Enterprise Services (NCES) that are relevant to all users. NCES will also contain

extended service sets that are community specific, which are called Community of

Interest (COI) services. Figure 5 shows a basic representation of NCES under the GIG

ES concept of employment. (“The Solution”, September 2004)

20

Figure 5. Net-Centric Enterprise Services (NCES) are the basis of GIG ES and
consists of those core services that are relevant to all users. NCES will also
contain extended service sets that are community specific, which are called

Community of Interest (COI) services. (From:

21

HTUhttp://ges.dod.mil/about/solution.htmUTH, September 2004)

The following defines NCES that are currently under development for the GIG

ES: (Meyerriecks 2004, HTUhttp://ges.dod.mil/articles/netcentric.htmUTH)

Enterprise Management Services – This set of services provides end-to-
end GIG performance monitoring, configuration management and problem
detection/resolution, as well as enterprise IT resource accounting and
addressing, for example, for users, systems and devices. Additionally,
general help desk and emergency support to users is encompassed by this
service area, similar to 911 and 411.

Messaging Services – This service grouping provides the ability to
exchange information among users or applications on the enterprise
infrastructure, such as e-mail, DoD-unique message formats, message-
oriented middleware, instant messaging and alerts.

Discovery Services – This service provides processes for discovery of
information content or services that exploit metadata descriptions of IT
resources stored in directories, registries and catalogs (to include search
engines).

Mediation Services – This set of services helps broker, translate,
aggregate, fuse or integrate data.

Collaboration Services – These services allow users to work together and
jointly use selected capabilities on the network—for example, chat, online
meetings and work group software.

Storage Services – These services provide physical and virtual places to
host data on the network with varying degrees of persistence, such as
archiving, continuity of operations and content staging.

Security Services – This set of services provides capabilities that address
vulnerabilities in networks, infrastructure services or systems. Further,
these provide characterizations of the “risk strength” of components as
well as “risk posture” of the hosting run-time environment in support of
future dynamically composed operational threads.

User Assistance Services – These services are automated “helper”
capabilities that reduce the effort required to perform manpower intensive
tasks.

2. Multiple Services Provided by a Single System
One of the goals of GIG ES is to provide an environment that allows for simple

development and deployment of services as the need grows. What is traditionally

thought of today as a single system or application can simultaneously support multiple

services under a properly implemented Grid architecture. As an example, a single data

source provider that is designed to output XML data from its internal data source could

also implement several user interfaces that output HTML, portlets or Personal Digital

Assistant (PDA) data as represented in Figure 6. (“Core Enterprise Services Strategy –

Draft Version 1.1”, 1 July 2003)

Figure 6. A Grid based application designed to provide multiple services can output

XML data from its internal data source as well as also implementing several user
interfaces that output HTML, portlets or Personal Digital Assistant (PDA) data.

(From: Assistant Secretary of Defense for Networks and Information Integration
(ASD/NII), GES-CES-Strategy, Draft Version 1.1)

A significant benefit of the extensible nature of the GIG is the ability to facilitate

specialization. Under the traditional architecture this has often led to problems with

interoperability as specialized applications are developed without extensible or flexible

capabilities to interface with other applications or systems. Specialization under the GIG

architecture allows for value added services to be realized from existing data providers as

DoD organizations constitute the existing content into new specialized services for the

rest of the community to use as represented in Figure 7. (“Core Enterprise Services

Strategy – Draft Version 1.1”, 1 July 2003)

22

Figure 7. Specialized services can extend existing services providing added value

for all users and communities. (Assistant Secretary of Defense for Networks and
Information Integration (ASD/NII), GES-CES-Strategy, Draft Version 1.1)

E. THE WARFIGHTER’S PERSPECTIVE
The purpose of the following information is to provide the "Operational View" of

the Network Centric Operations & Warfare (NCOW) Reference Model (RM) to better

reflect the actual warfighter’s perspective as identified by programs such as Warfighter

Information Network – Tactical (WIN-T), Future Combat Systems (FCS), Land Warrior,

GIG ES, etc.

As Figure 8 shows, employment of this architecture ensures users have access to

any and all resources facilitating the transition from a “need-to know” methodology to a

“need-to-share” methodology. This presents another issue, however. Enforcing the

“need-to-share” methodology does not imply that everyone has a need-to-know, so

mechanisms must be imposed to ensure proper access controls are in place. (Van Dine,

27 October 2003)

23

Figure 8. The GIG architecture ensures users have access to any and all resources

facilitating the transition from a “need-to know” methodology to a “need-to-
share” methodology. (Network-Centric Operations and Warfare Reference Model,

Draft Version 0.9)

Applying the net-centric concepts to WIN-T, a GIG transport, the COI concept

translates well to the Objective Force Unit of Action and Unit of Employment constructs,

but only somewhat to the Allied/Coalition interchanges. Ensuring appropriate access

restrictions are maintained requires proper scrutiny of personnel being registered with

participating COIs. Once registered, however, the design of COIs facilitates information

interchange among allies and coalition forces of all participating COIs. The traditional

guards that are required to affect release of sensitive information elements are translated

to the boundaries of individual COIs, which should reduce latency between United States

and allied warfighters performing similar operational activities. Figure 9 is a graphical

representation of WIN-T as a GIG transport detailed in the WIN-T Operational

Requirements Document (ORD). (Van Dine, 27 October 2003)

24

Figure 9. The Warfighter Information Network – Tactical (WIN-T) is a transport for

the GIG. This figure provides a graphical representation of the implementation
from the WIN-T Operational Requirements Document (ORD). (Original source:

Appendix k, Tab A to WIN-T ORD)

The FCS is a Joint networked system of systems, composed of eighteen

subsystems, that uses the WIN-T platform as a backbone for its network infrastructure.

See Figure 10 for a graphical representation. One primary concern of FCS is “identity

management.” To be effective it is imperative to know who is in what location and

conducting what activities. When applied to the concept of the GIG, some concerns have

to be addressed. FCS must be able to authoritatively authenticate service requests to

ensure authorized users access the proper services only. FCS is designed to provide

information to as low a level as individual soldiers if necessary. The process of properly

identifying and registering entities within the appropriate COI addresses some of the

issues if COI controls are managed locally rather than globally. However, there is still

25

research being conducted to solve the problems associated with complete implementation

of FCS identity management. (Van Dine, 27 October 2003)

Figure 10. The FCS is a Joint networked system of systems, composed of eighteen

subsystems, that uses the WIN-T platform as a backbone for its network
infrastructure. (From presentation titled: “GIG from a Warfighter Perspective”
authored by Wayne A. Van Dine, Jr., see Van Dine in the bibliography for more

details)

F. SUMMARY
The GIG is the realization of Network-Centric Warfare applied to the concept of

Grid computing. The GIG provides an extensible, service-oriented architecture that

ensures maximum resource access to authorized users. Many services and applications

are currently being revised to accommodate the interoperability requirements for

deployment on the GIG architecture. The POC developed for this thesis demonstrates the

possibility of deploying legacy systems on the GIG in their current state.

26

27

IV. DEVELOPMENT OF THE PROOF OF CONCEPT (POC)
EXEMPLAR

A. INTRODUCTION
This chapter expounds on the details of the research and development of the POC,

which utilizes a Java client/server application to mimic a proprietary system. The same

application is then used as the basis for the Web service, which generates the data for

Web-based reports and keeps the portal current without the need for manual updates.

The report portal consists of a simple user interface that provides access to reports from

the G1 T

7
T.

B. RESEARCH AND DEVELOPMENT METHODOLOGY
The methodology used in this thesis research consists of the following steps:

1. Research and collect data related to standards based Web services

2. Research and collect data related to standards based UDDI registry

3. Research requirements for an alternative platform for development of Web

service and UDDI registry

4. Install alternative development platform consisting of the following:

• Linux for the operating system (OS)

• Apache for the HTTP server using PHP as the scripting language

• Tomcat as the Java servlet container

• MySQL or PostgreSQL for the relational database if needed

• Java SDKs as necessary

5. Determine/define data set to prototype for exposure by a service

6. Develop Java program that acts as the provider agent for the service

7. Implement requester agent as a PHP based Web site

8. Develop Web-based display capability for results of service request

T

7
T The S1/G1/J1 are command staff sections charged with the responsibility of oversight of all

personnel and administration issues.

28

9. Develop Web service, which includes but is not limited to the following:

• PHP configuration

• XSLT development

• SOAP implementation

• Tomcat configuration

• Apache configuration

These topics are discussed in detail in the following paragraphs and form the basis

for the POC.

C. DEVELOPMENT AND TESTING PLATFORMS
As identified in chapter I, one of the goals of this research is to explore how OS

independent Web services are. This is an important characteristic of Web services,

identifying how flexible and extensible such an architecture is. The POC was developed

on a Windows XP Pro platform with mostly cross-platform compatible technologies.

Most of the development was completed on a Dell Precision M60 mobile workstation

running Windows XP Pro. The following is a list of the applications and programming

language technologies most relevant to the development and implementation process:

• Apache 2 HTTP Server used as testing server during development
• PHP 4.3.4 scripting language used as embedded scripting language for

dynamic content within the Web site.
• PHP Extension and Application Repository (PEAR), which is installed

automatically for PHP 4.3.x or greater. This is a framework to maintain and
distribute open-source PHP components, which have interesting capabilities
but are not Web standard.

• PEAR::SOAP, client/server SOAP implementation for PHP.
• MySQL 4.3.1 Beta-NT-Max relational database, which is used for login

authentication to the Web site on the testing server.
• Sun Java J2SE 1.4.2, which was used to develop the client and server

applications.
• Apache Tomcat 5.0.27 Server was used as the application server to expose the

Java server application as a Web service.
• Apache SOAP 2.3.1, Apache’s implementation of the SOAP 1.1 standard, was

used in conjunction with Tomcat to provide the Web services.

Eclipse 3.0 integrated development framework was used to code the Java client

and server applications and other required Web service classes.

Dreamweaver MX was the application used to develop the entire Web site.

Although this is neither open source nor free, nor is it natively cross-platform compatible,

it was chosen due to the author’s familiarity. Furthermore, it provided a quick and

intuitive way to create a PHP based Web site with a MySQL database backend.

However, it must be noted that the default PHP/MySQL extension that is provided with

Dreamweaver MX was not sufficient. Therefore, an open-source extension, PHAkt 2

MX , was used instead.

The alternative OS is Suse 9.0 Pro Linux. Although no development was

conducted on Linux, testing of the applications was conducted as progress proceeded to

ensure cross-platform compatibility and to test the flexibility of deployment. The

alternative OS platform differed only slightly from the primary OS platform. All

components necessary to employ the proof of concept on the alternate OS platform were

installed. The only variations consisted of some slight differences in version. Figure 11

is a depiction of the POC deployment architecture.

Figure 11. The target architecture for the proof of concept (POC) example depicted

here is intended to demonstrate the flexibility and platform independent nature of
Web services.

29

30

D. DATA REQUIREMENTS
Since the G1 portal is the focus of this POC only one data source is necessary. In

the case of the POC the information accessed by the G1 portal consists of textual

personnel data containing first names, last names, gender and last known duty status.

1. Personnel Reporting (G1)
In a real operational command center, personnel reporting is typically the

responsibility of the S1/G1/J1 staff section. Considering the point of this research is to

demonstrate how Web services can provide the commander with an improved

architecture for utilizing his or her information resources, the basis for the POC involves

a mock operational reporting portal representative of the type of briefing mechanism that

may be used in an operational command center. In this scenario the G1 is responsible for

maintaining data pertaining to the duty status of the personnel under its command. The

data specifically consists of a text file that contains the first name, last name, gender and

last known duty status of 15000 individuals. A notional list was generated by randomly

merging lists of last names, male first names and female first names obtained from the

United States Census Bureau’s Web site. Once merged, two additional fields were

added, gender and duty status. Construction of the final product was facilitated by

importing the desired data into a Microsoft Excel spreadsheet from three separate text

files called dist.all.last, dist.female.first and dist.male.first. Once in the spreadsheet the

gender and duty status fields were added and filled with relevant data. After the data

structure was complete the data was exported into a comma separated value (csv) text file

called “PersonnelStatusFile.csv” for use with the Java client/server application.

This data is artificial and does not represent realistic reporting requirements, but

rather provides a simple yet significant data source for use in the demonstration of Web

service capabilities.

E. WEB SERVICE IMPLEMENTATION

1. Service Providers
The basis for the service provider is a server that was developed for this proof of

concept, which stores Base-64 encoded data. The intent all along was to explore the

concept of how a Web service is used to provide a programmatic interface to a

proprietary data system that allows for remote accessibility by HTTP request and yields

real-time information. To demonstrate the application of such a concept a client and a

server, both written in Java, were developed to represent such a proprietary system.

a. Client Application
The client is designed with three basic functions in mind: open a file on

the local file system, encode and send a file to the server and retrieve a decoded file from

the server. Figure 12 and Figure 13 are screenshots of the user interface that allows the

user to choose a file from the local file system for viewing prior to encoding and

transmitting.

Figure 12. The “Locate File” dialog box is used to open a local file.

31

Figure 13. The “Current File” tabbed pane allows the user to view the selected

comma separated file.

Once the file is opened, the user reviews it and then sends it to the server

by selecting the “Send Current File” button. Selecting this button opens the connection

dialog shown in Figure 14 and changes the client view to the “Comm Status” tab, which

allows for monitoring of communication with the server.

32

Figure 14. The connection dialog is designed to allow the user to enter the Internet

Protocol address and port number of the server.

Once the server IP and port number are entered the user clicks on the

“Connect” button to encode the file and send it to the server for storage. Server IP

127.0.0.1 indicates that the server is running on localhost.

To retrieve a decoded file from the server the user initially clicks on “Get

Remote File List”. After processing the connection the server returns the list, which is

displayed in the tabbed pane “Get File From Server.” See Figure 15 for a screenshot of

the user interface. The user then enters the filename into the text box as shown in Figure

15 and clicks on the “Get this file:” button. Once the connection to the server has been

processed the decoded text is displayed in the same tabbed pane. See Figure 16 for an

example.

33

Figure 15. The “Get File From Server” tabbed pane allows the user to select a file

from the server.

34

Figure 16. Retrieved data is viewed in the “Get File From Server” tabbed pane.

This process demonstrates how a proprietary client/server system is

implemented to process data locally and store the data remotely. If a user needs access to

the data from a remote location, the client software must be installed on their local

computer in order to access the file in such a way as to retrieve the decoded data. This is

conceptually similar to the UD/MIPS system discussed in chapter I.

b. Server Application
The server application is fairly simple. The original version has a

graphical front-end, which can be seen in Figure 17. However, a second version was

developed without a graphical front-end to allow for remote deployment in situations

where a graphical context, such as an X Windows session, is not available.

35

Figure 17. The server graphical front-end is displayed when the server is running.

Once running, the server waits for a connection from a client. Upon

getting a connection from a client the server can take one of three actions: store an

encoded file, send the client the file list or decode and transmit the requested file back to

the client. The server determines which action to take based on the instructions from the

client. Figure 18 shows the control statement used to facilitate this action.

36

37

if (clientMsg.startsWith ("gettingFileList")) {
sendFileListToClient ();
} else if (clientMsg.startsWith ("gettingFile")) {
sendFileToClient ();
} else if (clientMsg.startsWith ("sendingFile")) {
fileName = clientMsg.substring (11);
processEncodedFile ();
}

Figure 18. The control statement used by the server determines which operation to
perform based on the message received from the client.

The “if” statement in Figure 18 tests whether the string called clientMsg

starts with one of three possibilities: “gettingFileList”, “gettingFile” or “sendingFile”.

Each of these indicates the client’s intentions to the server. If the first condition is true

then the server returns the file list relative to the server’s root directory. If the second

condition is true then the server decodes the requested file and transmits it to the client.

If the third condition is true then the server strips the first 11 characters from the

clientMsg string to produce the filename. This is the name that the server uses to create a

file object to save the file to the hard drive. Each condition is skipped until one is true.

Figure 19 shows the file being received for storage by the server.

It is important to note that the design of this POC example is not ideal.

For example, the filename is generated from the first eleven characters of the clientMsg

string but in reality not all filenames are eleven characters long. The POC was developed

to function properly with a specific file, with specific data in a specific format. This was

done intentionally to simplify development and does not detract from the overall concept

being researched.

Figure 19. The server displays the Base-64 encoded file sent by the client.

When the client requests a decoded file, the server uses the method

“decode”8 to decode the file and return clear text for transmission to the client; see Figure

20. This is important because it is the method that is exposed as a Web service and is

used to return data to any Web service client, which is discussed in more detail later.

8 The Base-64 encoding and decoding is facilitated by using classes found in the non-standard Java

package “sun.mic.”

38

39

public static String decode (String fileName2) {
try {
BufferedReader in = new BufferedReader(
new FileReader(fileName2));
StringBuffer buffer = new StringBuffer();
String text = new String();

while ((text = in.readLine ()) != null) {
buffer.append (text + "\n");
}
in.close ();

base64EncodedText = buffer.toString ();
clearText = new String(
new BASE64Decoder().decodeBuffer
base64EncodedText));
} catch (IOException e1) {
e1.printStackTrace ();
}
return clearText;
}

Figure 20. The server “decode” method is exposed as a Web service and provides
the basic services for retrieving data from the server.

c. Server Web Service
The design of the first and most basic Web service is centered on the

“decode” method of the server application. The process for deploying the server as a

Web service consists of several steps. First, a package was created called “server”, which

contains the server class and source files. This package was then used to create a “jar”

file called Server.jar. The jar file was then placed in the \shared\lib directory relative to

the Tomcat root directory. When Tomcat is restarted it is then able to provide Server.jar

as an accessible service. The final step is to register the service under SOAP. SOAP is

used to process requests from clients via HTTP.

Registering the service under SOAP takes several steps as well. SOAP

uses a Web-based form to register services. From the SOAP Web page located in the

Tomcat Web Application Manager click on the “Run” link; see Figure 21. This links to

the SOAP administrator page.

Figure 21. This screenshot shows Apache-SOAP running as a Web Application under

Tomcat.

Once at the administrator page click the red “Deploy” button in the menu

at the left; see Figure 22. This presents a form, which when properly completed creates a

service deployment descriptor file for Apache-SOAP to use for processing service

requests.

Figure 22. The Apache SOAP Admin page is used to manage service deployment

description configurations.

There are several options available for creating the service deployment

descriptor file but the service implementation used by the POC is simple and only

40

requires setting four parameters. The first parameter to establish is the service ID. For

the server service the ID is “urn:EncServer”; see Figure 23. Next it is necessary to

list all methods that are being exposed by the service. In this case there is only one

method, “decode”. This is entered as shown in Figure 23. After the methods have been

listed, there is one last parameter that has to be identified, the Java provider. This is the

name of the jar file that provides the service. The Java provider is server.Server and is

entered as shown in Figure 24.

Figure 23. This screenshot shows the service deployment descriptor ID and methods

list configuration form. These parameters are used to create the service
deployment descriptor file used by SOAP.

Figure 24. The service deployment descriptor configuration form requires a Java

Provider as well.

41

42

The last step is to deploy the service by clicking the “deploy” button at the bottom

of the form. To view the list of services click on the red “List” button in the menu at the

left. This provides a list of hyperlinks that allow viewing of the service deployment

descriptors.

 After completing the installation of the services and configuring the SOAP

service deployment descriptor files for each service, the services can be accessed via

HTTP. After being exposed as a service and implementing SOAP the server is accessible

by any type of client that uses the SOAP protocol. When a client calls the server Web

service it decodes the requested file and returns a string of text. It is important to make

the distinction that the service provided by Server.jar is a completely separate instance of

the original server application and has no affect on the original Java program. This

demonstrates that data maintained by the server can be successfully accessed and

retrieved in real-time by a means other than the original client application and without

interfering with the server’s execution. The data is retrieved programmatically and can

be further processed to meet specific needs, which is demonstrated with two other service

implementations detailed later in this text. (“Apache SOAP v2.3.2 Documentation”,

September 2004)

d. Parser Web Service
The parser Web service is arguably the most critical component of the

architecture being implemented. In order to overcome the challenge of data format

dependency, it is necessary to transform the original text into XML. Once this has

occurred, the data can be further transformed with much greater flexibility using XSLT.

The parser Web service is a special interface to the original server Web

service that allows a client to request a decoded file and receive XML data instead of

plain text. Upon receiving a call from a client, the parser service makes a call to the

server and passes the arguments as strings, which are the filename of the file to be parsed

and the Uniform Resource Locator (URL) of the service. The server returns a string of

text, which the parser tokenizes and parses into XML. This XML is then returned to the

client. A testament to the flexibility of this architecture is that these services can be on

different networks and on different OSs without any concern for interoperability.

43

For the purposes of the POC the parser is fairly crude and designed to

work specifically with the “PersonnelStatusFile.bsf” file. Ideally the parser is designed to

be flexible enough to parse any file of the data type in question. Although this is not

necessarily a trivial endeavor, it is a key stepping stone towards data format

independence and interoperability. Another considerable benefit to this type of

architecture is the control provided over the data. Since the data is now accessible by a

means other than the original client application other service capabilities can be derived

and implemented in order to automate such tasks as service discovery and data

presentation.

e. Transformation Web Service
The POC demonstrates that with the basic server service clients are able to

retrieve textual data and with the parser service clients are able to retrieve XML data.

Finally, to demonstrate the desired end state, which is the ability to present the data in a

useful manner, as information with context in real-time, a third service is implemented.

The transformation Web service is another special interface to the server Web service. It

is possible to have the transformation service interface with the parser service but a

design decision was made to avoid chaining more than two services together.

Essentially the transformation service is an extended version of the parser service. It

contains the same parser capability but also contains code based on javax.xml.transform

classes that facilitates the transformation process. The transformation service calls the

server service in the same manner as the parser service but once it has finished parsing

the returned data into XML it applies a transformation, which is determined by the

XSLT. In this case the file is transformed into HTML to be displayed by a Web browser

as a table with hyperlinks.

2. Service Requesters
The service requesters, or consumers, are composed of three clients that are

referred to as the basic client, the parser client and the transformation client. Since Web

services can be called by any SOAP supported client it is important to identify that the

POC implemented the parser and transformation clients’ capabilities with two different

technologies, Java and PHP. The Java implementation of these clients provides a useful

tool for service testing and debugging. Once installed under the SOAP server in Tomcat,

these two clients serve a second, and perhaps more significant, role as the parser service

and transformation service previously mentioned; further demonstration of the

extensibility of this architecture. The PHP versions of all three clients were specifically

designed to demonstrate the ability to call the Web services from within a Web browser.

a. Basic Client
The basic client exercises the basic server service and demonstrates the

fundamental ability to create a client using PHP. PHP uses an additional component

called PEAR SOAP to communicate with the designated SOAP server. When the web

page is called containing the PHP script for the basic client a reference is established

containing a new instance of a SOAP_Client object with a parameter containing the URL

of the SOAP RPC router. Next an array is created to hold the values of the arguments to

be passed to the SOAP server. In the case of the basic service there is only one argument,

the file name. Finally, the SOAP_Client calls the service via the “call” function, which

takes as its arguments the name of the exposed method call, in this case “decode”, the list

of parameters from the previously mentioned array, in this case the filename, and the

Web service identifier. The results of this call are stored in a variable, which is passed as

an argument to the “print” function to display as text in the browser; see Figure 25.

Figure 25. When the Web portal client is used to submit a request to the basic client,

the results are displayed as text in a new browser window.
44

This basic client retrieves unformatted text only, which is not very useful

by itself, but represents the first stage of the complete architecture.

b. Parser Client
The parser client is essentially the same as the basic client with two

changes. First the parameter array contains an additional parameter for a total of two.

The additional parameter is the URL of the server Web service’s SOAP RPC router. The

second change is contained in the parameter list for the “call” function. The method call

is changed to “getDecodedFile” and the service identifier is changed to the service being

called, in this case “urn:XMLPersonnelStatusService”. These are identified in the service

deployment descriptor file and are used by the SOAP RPC router to properly process the

service request. Everything else remains the same.

Figure 26 shows sample output of the XML data in a Mozilla based open-

source Web browser called Firefox. Figure 27 shows the same output in Internet

Explorer in a hierarchical form. The difference in the XML presentation is a result of

browser implementation.

Figure 26. The second service implemented parses the text and converts it into XML.

The Firefox Web browser renders to resulting XML output from the parser
service without the XML tree. Firefox implements XML parsing and rendering in

a different manner than Internet Explorer.
45

Figure 27. Although the results from the parser are the same as before, Internet

Explorer renders the resulting XML output as an XML tree. This is specific to the
Internet Explorer.

A simple XML schema is used to validate the data. The parser is told

where the schema is located and includes the schema’s Uniform Resource Identifier

(URI) in the returned XML. When a validating Web browser is used, the received data is

validated against the schema. This type of functionality is very important. XML

Schemas can be used to impose very specific requirements on the XML data being

validated. In the case of operational information this is a significant and necessary

capability.

c. Transformation Client
The last client implementation is the transformation client. The same

parameters are changed for this client as for the parser client. The only differences are

the name of the method being called and the service identifier. The method name is

changed to “getTransformedFile” and the service identifier is changed to

46

“urn:PersonnelStatusSummary”. Since the transformation Web service transforms the

XML into HTML the browser renders the results as a report in an HTML table; see

Figure 28.

Figure 28. The last service implemented uses XSLT to transform XML into an

HTML table containing a Summary Personnel Status Report as shown in Firefox.

The transformation analyzes 15000 entities on the server side first tallying

the totals based on a “Gender” XML tag and a “DutyStatus” XML tag, then returning the

results in HTML. All of this information is generated “on the fly” as a request is

processed. If the data changes on the server, the report generated in Figure 27 is updated

automatically upon the next request.

Although not implemented in this POC each of the hyperlinks is capable

of being linked to another service. For example, if the user clicks on the hyperlink “60”,

a service can be called that returns a PDF version of a detailed list of all females killed in

action (KIA) with all available fields of data.

F. WEB PORTAL/REPORT IMPLEMENTATION

47

The Web Portal is the POC’s basic platform and the primary utility used in its

implementation. The overarching theme of this research is how to most effectively

48

provide real-time information to the commander. Web sites are very common tools for

providing staffs access to remote information but that remote information typically

becomes stale very quickly. Dynamic Web sites using database back-ends require

considerable maintenance because they do not have direct access to the data at its origin.

As information changes on the proprietary systems used in the command center, updates

have to be committed to the database, but the data often first requires exporting from the

original system and reformatting. These changes typically take considerable effort. The

goal is to provide an architecture that can use a Web browser to access any and all

systems at the commander’s disposal and integrate the data into a functional tool that

allows for a comprehensive perspective of the battlespace.

G. SUMMARY
The POC uses a client Java program and server Java program as a notional

proprietary data architecture. The server is then exposed as a Web service to demonstrate

the capabilities of a Web service implementation.

49

V. PROOF OF CONCEPT (POC) EXEMPLAR RESULTS

A. INTRODUCTION
The following provides information based on the results of the POC. The author

provides insights gained from the research and development of the POC implementation.

This chapter starts by discussing the significance of Web service flexibility by discussing

the results of the deployment architecture. Next, the author discusses the impact of the

use of technologies with OS independent characteristics. Thirdly, the author provides

information pertaining to the interoperability of the services. Finally, the chapter

discusses the significance of proper parser design determined as a result of the parser

service created for the POC.

B. WEB SERVICE EMPLOYMENT
To demonstrate the flexibility of a Web service architecture all application

development uses platform independent technologies and is deployed on both Microsoft

Windows and Linux.

A non-graphical version of the server application written in Java runs on the

Linux server in order to facilitate remote employment that does not require a graphical

context, such as an X Windows session. The running of the server application does not

affect the implementation of the services. The services can be designed to run from an

entirely different machine. Figure 29 is a representation of just one deployment scheme

the POC is capable of being deployed under. Deployment can be fairly complicated as a

result of the way different OSs handle class paths. Java has a number of classes designed

to assist with this issue but when deploying a distributed architecture such as the POC it

can become difficult to manage.

The POC was designed on a single machine with services running from

“localhost”. The final results demonstrate that the services can be exposed on different

machines on a network running on different OSs. To realize the true benefits of such an

architecture proper planning and design is critical for the long-term.

Figure 29. As previously identified this sample deployment architecture for the proof

of concept demonstrates the flexibility of Web services. The Java applications are
deployable on Windows and Linux and the services function properly over a

network.

C. OPERATING-SYSTEM INDEPENDENCE
Another desire of the author is to demonstrate how flexibility can be improved by

ensuring the use of technologies, such as Java and PHP that are designed to work with

multiple OSs and have large, open, support communities. Since the interaction of these

applications and services is based on protocols such as HTTP and TCP/IP, OS

independence is assured provided standards are abided by. OS independence really refers

to portability in the case of the POC. The design of the architecture should be based on

technologies that permit for OS independent service implementation. This ensures

optimum flexibility.

As previously mentioned, great efforts were made to employ open-source

technologies in the development of the POC. Although Java is not open-source, it has a

mature development community. Java is also ideally suited to Web services by the very

nature of its design. The server and client applications deployed on both Linux and

Windows without any runtime issues. As previously mentioned the server was modified

to run from a command line for remote execution. There is one problem with the code,

50

however, that causes the client to disconnect from the server when trying to upload a file

remotely. This problem does not exist when executed on the localhost, only when

networked. The client running on Windows XP is able to download and view a file from

the server running on Linux without any problems. This bug is being investigated.

The Web Portal uses extremely flexible technologies. Since the Department of

Defense is standardized on Microsoft software, it is important the technologies used are

compatible with the Windows platform. PHP, the embedded scripting language, and

MySQL, the database server, are both available for Linux and Windows. Installation and

configuration is easy and well documented. The Web Portal was deployed on both OSs

under the Apache HTTP server. Apache is the most active and widespread HTTP server

on the Web today, as shown in Figure 30.

Figure 30. Much effort was made to utilize open-source technologies during the

conduct of this research. The Web server of choice for the proof of concept was
Apache on both Windows and Linux. These statistics represent the market share

for top servers across all domains from September 1995 to September 2004,
which demonstrates the ubiquity of Apache. (From:

http://news.netcraft.com/archives/web_server_survey.html, September 2004).

These three technologies provide an extremely stable and robust architecture for

the Web Portal. As the site was developed on the Windows machine updates were
51

http://news.netcraft.com/archives/web_server_survey.html

committed to the remote Linux machine without any issues. The MySQL database

consisted of a single table used to provide user access control to the Web site. The table

was simply copied to the Linux version of the MySQL server and the Web site was able

to use it without issue.

D. INTEROPERABILITY
Interoperability is the ability of one system to use the parts or components of

another system (Merriam-Webster Online, September 2004). The POC demonstrates the

validity of Web service interoperability. Although the POC was developed as a whole

architecture on one machine, pieces of the architecture are deployed to multiple machines

of different platforms effectively applying the concept of interoperability. Perhaps the

most significant demonstration of interoperability is the use of PHP and Java to call the

services. When calling the XML data service from the Web site (see Figure 31), PHP is

used to call the parser service, which is written in Java, and then the parser service calls

the server service and returns the results to the PHP Web page. The server service called

by the parser service can also be called from within the Web site using PHP not just the

parser service written in Java.

Figure 31. Each button of the G1 Web portal calls a service designed to return

specific data to demonstrate the capabilities of each service. Each service
represents a stepping-stone of the final product.

52

53

E. PARSER FUNCTIONALITY

In order to accomplish the desired results the POC needs the ability to parse

through a string of text, identify specific characteristics associated with that string of text

and break it up into separate elements or tokenize it. This is necessary in order to change

the text into a string of XML. Each token is tagged according to criteria established by

the parser. When the parser service is called, another call is made to the server service.

The “PersonnelStatusFile” file, a Base-64 encoded file about 459 kilobytes in size, is read

and decoded by the server service. The parser service receives a text string, tokenizes it

and tags it. The resulting string is approximately 2.2 megabytes in size, which is

understandable when considering the file contains 15000 individual records. This type of

information is very important to consider during the design process. If the data being

returned by the service is going to be significant in size, it may be useful to employ some

type of compression scheme to minimize bandwidth consumption. All services must be

able to be practically employed over the network.

The parser must be designed to be flexible and extensible. It should support many

data processing requirements but needs to be stable and robust enough to support many

requests at the same time, which is as much a function of the deployment architecture as

it is design.

The parser may be employed in many different ways. In the case of the POC, the

parser was implemented as a service in order to be called from the Web site and

demonstrate the process of transforming textual data into a summarized, formatted report,

which is the chore the transformation service performs.

F. SUMMARY
This chapter discussed the results of the implementation of the POC. Information

was also provided pertaining to the impact of some of the supporting technologies.

54

THIS PAGE INTENTIONALLY LEFT BLANK

55

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS
Much is being investigated regarding interoperability specifications as the DoD

transitions from current information systems to those that will be employed under the

umbrella of the GIG ES architecture. In providing the services identified to meet the end

user information requirements, it is crucial that future software development abides by

the GIG ES interoperability specifications. When fully deployed, many of the services

the GIG is intended to provide will be Web based, enabling commanders to maintain an

up-to-date perspective of the battlespace. This allows for a greater focus of effort on the

decision-making process and requires less effort to keep information current. Web

services is one of the technologies being considered to meet these needs. A Web services

architecture does not necessarily require existing applications be rewritten or redesigned

in order to be deployed as Web services. Many of the services that the GIG ES is going

to provide are not new services but derived from currently used systems (“The Solution”,

September 2004). This research provides a proof of concept that demonstrates the

possible effectiveness of leveraging a Web services architecture against currently

employed legacy data systems, such as UD/MIPS, and proprietary applications.

Although the POC doesn’t use an actual Marine Corps legacy system, great efforts have

been taken to create a notional environment that would provide for valid analysis of the

results. The POC is intended to represent a plausible mechanism a commander can

employ to maintain his or her situational awareness in a modern operational command

center.

The difficulties of implementation are more a function of overall architecture

design than application design. If the intent is to simply take existing network

architecture and an existing application and create a Web service with minimal

deployment expectations, the technical challenges can be overcome with enough effort

and ingenuity. Nevertheless it quickly becomes apparent that this methodology is not

flexible or stable enough for the long-term if the intention is to create a service oriented

architecture at an enterprise level. In other words, it has to be scalable. To ensure

success in the long-term the business and technical architects must meet challenges with

56

detailed coordination across all encompassing organizations to coordinate standard

processes for service implementation and discovery (Varhol, 30 March 2004). This

ensures compatible deployment of both legacy and new applications on an infrastructure

designed to support maintenance, stability and scalability.

A Web services architecture is designed to provide the necessary extensibility and

flexibility to facilitate implementing existing client/server software and data systems.

The basic concept is fairly easy to grasp but implementation can become very complex.

In the case of the POC, implementing a Web services architecture consists of three main

actions; expose a server as a service, accessible via HTTP, that can respond to SOAP

requests; create a Web service deployment descriptor file used by the SOAP processor to

process SOAP requests; and finally, build a client based on the Web service deployment

descriptor parameters to make SOAP requests. During the development process, as the

Java client and server were completed, the complexities involved in implementing the

Web service quickly became apparent. The Java server application is not specifically

designed for employment as a Web service but was successful nonetheless, which

validates the concept. If good programming techniques are used during development of

an application, implementing it as a Web service is not a problem. One such example

exists in the POC. The “decode” method mentioned in chapter IV is the method that

constitutes the server Web service. It is specifically designed employing a “return”

statement, which facilitates the Web service implementation.

The author’s experiences deploying the server as a Web service, and creating two

other services based on the results of the basic service, have led to the conclusion that

although Web services technologies can be leveraged successfully against legacy and

proprietary systems, long-term planning of a scalable enterprise level architecture is

critical if benefits are to be realized. The plan needs to consider the impact of

commercial solutions vice open-source and make every effort to adhere strictly to an

open standards implementation. Open standards allow for greater interoperability and

help avoid reliance on proprietary solutions.

57

B. RECOMMENDATIONS FOR FUTURE WORK

1. XML-Based Authentication and Authorization Technologies
The GIG is currently being developed and is ripe for research. The first suite of

services, NCES, being offered is a core service set that is considered to be useful across

the DoD. As progress is made, community specific services will be made available

called COI services. COIs are groups of users that have common interests and goals,

share mission or business processes and have agreed-upon terms of service behavior. An

example of a COI is Combatant Commander Operational C2 (“The Resources”,

September 2004). Many of these services have an access control requirement. There

needs to be a method to facilitate necessary authentication and authorization mechanisms

that are matched to the underlying architecture. Current mechanisms are difficult to

maintain and service, especially on very distributed systems such as UD/MIPS.

Furthermore, not all services will require the same level of control. For example, unit

tables of organization (TO) are accessible as static documents via the Internet if the

commodity manager provided the necessary password. That password only grants the

user access to specific TOs based on their level of command. A user at command “A”

cannot see the TO for command “B” and vice versa. If this capability was provided as a

Web service with agreed upon tagging conventions using XML, all data could be stored

as an XML database and TOs could be generated “on-the-fly” on a per-request basis.

Each user logs into a Web page, which provides a list of parameters to choose from based

on user identification and access rights.

The previous example is probably appropriate for sensitive but unclassified

information control but other research needs to be done in the area of access control

methods and encryption for classified material. The W3C currently has working groups

involved in developing standards for exactly these issues. Three notable working groups

are the XML Encryption Working Group, XML Key Management Working Group and

the XML Signature Working Group.

The XML Encryption Working Group’s mission is to develop a means of

encrypting and decrypting digital content, including complete or portions of XML

documents. XML syntax is used to represent the encrypted data and provide information

to enable intended recipients to decrypt it (Reagle, June 2002).

58

The XML Key Management Working Group’s mission is to develop an XML

application/protocol specification allowing clients to obtain “key” information such as

values, certificates, and management or trust data, from a Web service. The basis for this

specification is the XML Key Management Specification (XKMS). XKMS is composed

of two components, the XML Key Information Service Specification (X-KISS) and the

XML Key Registration Service Specification (X-KRSS). X-KISS is used to define a

Trust service protocol that resolves public key information contained in XML Signature

elements. X-KRSS is used to define a public key registration Web service protocol that

allows for public key verification across multiple Web services. (Farrell et al, September

2004)

2. Web-Service Based Common Operating Picture (COP)
Another area of research related to the realization of the GIG is a Web service

based common operating picture. There are several tools available to the commander

today that attempt to provide a visual perspective of friendly and enemy troops and

assets, painting a picture of the battlespace. These applications typically require subject

matter experts to run and interpret them with much time and resources being wasted just

trying to interpret and maintain the data. The level of data integration is minimal and

interoperability is a significant problem. The graphic representation is typically two

dimensional and inflexible. As the GIG is fully deployed these data systems will become

better integrated with previously non-interoperable systems allowing for a more robust

capability. Since many of the services are going to be Web based, it only seems fitting

that there is a need for future work involving a Web service COP.

Major Claude Hutton, a former student of the Naval Postgraduate School,

conducted research involving the three dimensional rendering of terrain data using XML

and the Virtual Reality Modeling Language (VRML)/Extensible 3D Graphics (X3D) in a

Web browser. His work demonstrates the ability to query a database containing terrain

data and generate a terrain model in real-time. This proof of concept is a good start

towards a working Web services based common operating picture prototype. Although

the GIG is determined to bring a greater level of interoperability and data integration,

59

without research such as this the commanders may still be left with “home grown”

solutions. A Web services based COP can provide a standard platform for data

integration. (Hutton, 2003)

3. Web Service Discovery
Another major issue with creating an SOA is the concern for service discovery.

As the GIG becomes a reality and more and more services are deployed it is imperative

that consumers are able to find what they need. Discovery is the means by which a

consumer is able to locate and implement desired services and UDDI is the normative

standard for implementation of such means. Certain aspects associated with service

registration need careful consideration. Not all services need to be accessible to all users.

Within the architecture of the GIG communities of users with similar interests called

COIs are a good example of why proper UDDI implementation is so necessary. Research

in this area needs to be conducted to identify how to provide access to service

information based on the requestor. Going a step further with this research, there is a

need to automate as much of the discovery and integration as possible. Many services, if

properly designed can be discovered and integrated without much if any user interaction.

This type of automation is significant from a staff perspective. If a staff has to deploy

into an operational environment the services that are used in garrison will most likely still

need to be available. If the services and UDDI registry are well developed and robust,

proper Standing Operating Procedures (SOP) will dictate what services are virtually

“plug-n-play”. When the staff establishes connectivity in the field, the basic service set

established by SOP is fully functional, reducing functional downtime considerably

(Bryan, 19 July 2002).

60

THIS PAGE INTENTIONALLY LEFT BLANK

61

APPENDIX A – CLIENT CLASS

package client;

import java.awt.*;
import java.awt.event.*;

import java.io.*;

import javax.swing.*;

/**
 * The Client class provides a graphical client that allow
 * users to encode
 * files and store them on the server, which is specifically
 * designed to work
 * with this client.
 *
 * @author David Lowery
 * @version 1.0
 */
public class Client extends javax.swing.JFrame {
 //~ Static fields/initializers ----------------------------

 private static JTextArea getFileTextArea;
 private static JTextArea serverCommTextArea;

 //~ Instance fields ---------------------------------------

 private JButton getThisFileBtn;
 private JTextField getFileTextField;
 private JScrollPane getFileScrollPane;
 private JPanel getFileBtnPanel;
 private JPanel getFilePanel;
 private JButton clearFileBtn;
 private JEditorPane fileTextEditorPane;
 private JButton getFileBtn;
 private JButton sendFileBtn;
 private JScrollPane serverCommScrollPane;
 private JScrollPane fileScrollPane;
 private JButton fileOpenBtn;
 private JMenuItem getFileMenuItem;
 private JPanel btnPanel;
 private JTabbedPane clientTabbedPane;
 private JPanel mainPanel;

63

 private JMenuItem exitMenuItem;
 private JSeparator jSeparator2;
 private JMenuItem sendToServerMenuItem;
 private JMenuItem openFileMenuItem;
 private JMenu fileMenu;
 private JMenuBar jMenuBar1;
 private File file;
 private JFileChooser jFileChooser1;
 private StringBuffer buffer;
 private String conString;
 private BufferedReader in;
 private String fileText;

 //~ Constructors --

 /**
 * Constructor for a new Client object.
 */
 public Client () {
 initGUI ();
 }

 //~ Methods ---

 /**
 * Event handler - invoked when JButton fileOpenBtn is

 * selected. Calls
 * method openFile.
 *
 * @param evt Event to be handled.
 */
 protected void fileOpenBtnActionPerformed (ActionEvent evt)

{
 openFile ();
 }

 /**
 * Event handler - invoked when JmenuItem

 * sendToServerMenuItem from Menu is
 * selected. Calls method sendFile.
 *
 * @param evt Event to be handled.
 */
 protected void sendToServerMenuItemActionPerformed

(ActionEvent evt) {
 sendFile ();
 }

64

/**
 * Event handler - invoked when JMenuItem exitMenuItem from

 * Menu is
 * selected. Terminates client application.
 *
 * @param evt Event to be handled.
 */
 protected void exitMenuItemActionPerformed

(ActionEvent evt) {
 System.exit (0);
 }

 /**
 * Method initGUI initializes the GUI.
 */
 protected void initGUI () {
 try {
 mainPanel = new JPanel();
 clientTabbedPane = new JTabbedPane();
 fileScrollPane = new JScrollPane();
 fileTextEditorPane = new JEditorPane();
 serverCommScrollPane = new JScrollPane();
 serverCommTextArea = new JTextArea();
 getFilePanel = new JPanel();
 getFileBtnPanel = new JPanel();
 getThisFileBtn = new JButton();
 getFileTextField = new JTextField();
 getFileScrollPane = new JScrollPane();
 getFileTextArea = new JTextArea();
 btnPanel = new JPanel();
 fileOpenBtn = new JButton();
 sendFileBtn = new JButton();
 getFileBtn = new JButton();
 clearFileBtn = new JButton();
 jMenuBar1 = new JMenuBar();
 fileMenu = new JMenu();
 openFileMenuItem = new JMenuItem();
 sendToServerMenuItem = new JMenuItem();
 getFileMenuItem = new JMenuItem();
 jSeparator2 = new JSeparator();
 exitMenuItem = new JMenuItem();

 BorderLayout thisLayout = new BorderLayout();

65

 this.getContentPane ().setLayout (thisLayout);
 thisLayout.setHgap (0);
 thisLayout.setVgap (0);
 this.setDefaultCloseOperation

(WindowConstants.EXIT_ON_CLOSE);
 Client.setDefaultLookAndFeelDecorated (true);
 this.setTitle ("Encryption Client");
 this.setResizable (true);
 this.setSize (new java.awt.Dimension(807, 627));
 this.setLocation (new java.awt.Point(400, 210));

 BorderLayout mainPanelLayout = new

BorderLayout();
 mainPanel.setLayout (mainPanelLayout);
 mainPanelLayout.setHgap (0);
 mainPanelLayout.setVgap (0);
 mainPanel.setPreferredSize (new

java.awt.Dimension(800, 600));
 this.getContentPane ().add (mainPanel,

BorderLayout.CENTER);
 clientTabbedPane.setPreferredSize (
 new java.awt.Dimension(800, 600));
 mainPanel.add (clientTabbedPane,

BorderLayout.CENTER);
 fileScrollPane.setHorizontalScrollBarPolicy (
 JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED);
 fileScrollPane.setVerticalScrollBarPolicy (
 JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED);
 fileScrollPane.setPreferredSize

(new java.awt.Dimension(795,
530));

 clientTabbedPane.add (fileScrollPane);
 clientTabbedPane.setTitleAt (0, "Current File");
 fileTextEditorPane.setPreferredSize (
 new java.awt.Dimension(792, 481));
 fileScrollPane.add (fileTextEditorPane);
 fileScrollPane.setViewportView

(fileTextEditorPane);
 clientTabbedPane.add (serverCommScrollPane);
 clientTabbedPane.setTitleAt (1, "Comm Status");
 serverCommTextArea.setEditable (true);
 serverCommTextArea.setEnabled (true);
 serverCommTextArea.setToolTipText

("Area to monitor communication with server.");
 serverCommScrollPane.add (serverCommTextArea);
 serverCommScrollPane.setViewportView

(serverCommTextArea);

66

 BorderLayout getFilePanelLayout = new

orderLayout();
 getFilePanel.setLayout (getFilePanelLayout);
 getFilePanelLayout.setHgap (0);
 getFilePanelLayout.setVgap (0);
 clientTabbedPane.add (getFilePanel);
 clientTabbedPane.setTitleAt

(2, "Get File From Server");
 getFileBtnPanel.setPreferredSize

(new java.awt.Dimension(795, 47));
 getFilePanel.add (getFileBtnPanel,

BorderLayout.SOUTH);
 getThisFileBtn.setText ("Get this file:");
 getThisFileBtn.setToolTipText

("Sends request to server for the chosen file.");
 getThisFileBtn.setPreferredSize

(new java.awt.Dimension(100, 26));
 getFileBtnPanel.add (getThisFileBtn);
 getThisFileBtn.addActionListener (
 new ActionListener() {
 public void actionPerformed

(ActionEvent evt) {
 getThisFileBtnActionPerformed (evt);
 }
 });
 getFileTextField.setToolTipText

("Type the name of the file you wish to
choose exactly as it appears above.");

 getFileTextField.setPreferredSize
(new java.awt.Dimension(289, 30));

 getFileBtnPanel.add (getFileTextField);
 getFileTextField.addActionListener (
 new ActionListener() {
 public void actionPerformed

(ActionEvent evt) {
 getFileTextFieldActionPerformed (evt);
 }
 });
 getFilePanel.add (getFileScrollPane,

BorderLayout.CENTER);
 getFileScrollPane.add (getFileTextArea);
 getFileScrollPane.setViewportView

(getFileTextArea);

 FlowLayout btnPanelLayout = new FlowLayout();
 btnPanel.setLayout (btnPanelLayout);

67

 btnPanelLayout.setAlignment (FlowLayout.CENTER);
 btnPanelLayout.setHgap (5);
 btnPanelLayout.setVgap (5);
 btnPanel.setPreferredSize (new

ava.awt.Dimension(800, 47));
 btnPanel.setMaximumSize (new

java.awt.Dimension(800, 90));
 mainPanel.add (btnPanel, BorderLayout.SOUTH);
 fileOpenBtn.setText ("Open Local File");
 fileOpenBtn.setBorderPainted (true);
 fileOpenBtn.setToolTipText

("Click to open a file on this machine");
 fileOpenBtn.setPreferredSize (new

java.awt.Dimension(160, 30));
 btnPanel.add (fileOpenBtn);
 fileOpenBtn.addActionListener (
 new ActionListener() {
 public void actionPerformed

(ActionEvent evt) {
 fileOpenBtnActionPerformed (evt);
 }
 });
 sendFileBtn.setText ("Send Current File");
 sendFileBtn.setToolTipText

("Encrypts and sends local file to server
for storage.");

 sendFileBtn.setPreferredSize (new
java.awt.Dimension(150, 30));

 btnPanel.add (sendFileBtn);
 sendFileBtn.addActionListener (
 new ActionListener() {
 public void actionPerformed

(ActionEvent evt) {
 sendFileBtnActionPerformed (evt);
 }
 });
 getFileBtn.setText ("Get Remote File List");
 getFileBtn.setToolTipText

("Gets and displays file that has been
decrypted by server.");

 getFileBtn.setPreferredSize (new
java.awt.Dimension(160, 30));

 btnPanel.add (getFileBtn);
 getFileBtn.addActionListener (
 new ActionListener() {
 public void actionPerformed

(ActionEvent evt) {

68

 getFileBtnActionPerformed (evt);
 }
 });
 clearFileBtn.setText ("Clear the Current File");
 clearFileBtn.setToolTipText ("Clears the text

editor view.");
 clearFileBtn.setPreferredSize (new

java.awt.Dimension(160, 30));
 btnPanel.add (clearFileBtn);
 clearFileBtn.addActionListener (
 new ActionListener() {
 public void actionPerformed

(ActionEvent evt) {
 clearFileBtnActionPerformed (evt);
 }
 });
 setJMenuBar (jMenuBar1);
 fileMenu.setText ("Fi ; le")
 fileMenu.setVisible (true);
 jMenuBar1.add (fileMenu);
 openFileMenuItem.setText ("Open Local File");
 openFileMenuItem.setVisible (true);
 openFileMenuItem.setToolTipText

("Opens a file on this
machine.");

 openFileMenuItem.setBounds
(new java.awt.Rectangle(5, 5,

60, 30));
 fileMenu.add (openFileMenuItem);
 openFileMenuItem.addActionListener (
 new ActionListener() {
 public void actionPerformed

(ActionEvent evt) {
 openFileMenuItemActionPerformed

(evt);
 }
 });
 sendToServerMenuItem.setText ("Send File to

Server");
 sendToServerMenuItem.setVisible (true);

sendToServerMenuItem.setToolTipText (
 "Encrypts and sends local file to server for

storage.");
 sendToServerMenuItem.setBounds (
 new java.awt.Rectangle(5, 5, 60, 30));
 fileMenu.add (sendToServerMenuItem);

69

 sendToServerMenuItem.addActionListener (
 new ActionListener() {
 public void actionPerformed

(ActionEvent evt) {
 sendToServerMenuItemActionPerformed (evt);
 }
 });
 getFileMenuItem.setText ("Get File from Server");
 getFileMenuItem.setToolTipText (
 "Gets and displays file that has been

decrypted by server.");
 fileMenu.add (getFileMenuItem);
 jSeparator2.setLayout (null);
 jSeparator2.setVisible (true);
 jSeparator2.setBounds (new java.awt.Rectangle(5,

5, 60, 30));
 fileMenu.add (jSeparator2);
 exitMenuItem.setText ("Ex ; it")
 exitMenuItem.setVisible (true);
 exitMenuItem.setToolTipText ("Exits

app
 exitMenuItem.setBounds (new java.awt.Rectangle(5,

lication.");

5, 60, 30));
 fileMenu.add (exitMenuItem);
 exitMenuItem.addActionListener (
 new ActionListener() {
 public void actionPerformed

(ActionEvent evt) {
 exitMenuItemActionPerformed (evt);
 }
 });
 } catch (Exception e) {
 e.printStackTrace ();
 }
 }

/**
* Method openFile switches view to fileScrollPane and
* creates a file

 * chooser dialog.
 */
 protected void openFile () {
 clientTabbedPane.setSelectedComponent

(fileScrollPane);
 jFileChooser1 = new JFileChooser();
 jFileChooser1.setDialogTitle ("Locate File");
 jFileChooser1.setToolTipText ("Choose a file.");

70

 /*
 * remove or comment out the next two lines to disable

 * the default
 * selection or change the name of the default file if

 * desired.
 */
 int result = jFileChooser1.showOpenDialog (this);
 file = new File("D:\\My

Documents\\Thesis\\PersonnelStatusFile.csv");
 jFileChooser1.setCurrentDirectory (file);
 jFileChooser1.setSelectedFile (file);

 if (result == JFileChooser.CANCEL_OPTION) {
 return;
 }
 file = jFileChooser1.getSelectedFile ();

 try {
 in = new BufferedReader(new

FileReader(file));
 buffer = new StringBuffer();

 String text;
 fileTextEditorPane.setText ("");

 while ((text = in.readLine ()) != null)
 buffer.append (text + "\n");

 fileText = buffer.toString ();
 fileTextEditorPane.setText (fileText);
 in.close ();
 } catch (IOException e1) {
 e1.printStackTrace ();
 }
 }

 /**
 * Method main initializes the client by calling method

 * showGUI.
 *
 * @param args Default parameter for method main.
 */
 public static void main (String [] args) {
 showGUI ();
 }

71

 /**
 * Method showGUI creates a new instance of this class and

 * shows it inside
 * a new JFrame.
 */
 protected static void showGUI () {
 try {
 Client inst = new Client();
 inst.setVisible (true);
 } catch (Exception e) {
 e.printStackTrace ();
 }
 }

 /**
 * Event handler - invoked when JButton sendFileBtn is

 * selected. Calls
 * method sendFile.
 *
 * @param evt Event to be handled.
 */
 protected void sendFileBtnActionPerformed (ActionEvent evt)

{
 sendFile ();
 }

/**
 * Method sendFile switches view to serverCommSrollPane and

creates a
 * Connection object.
 */
 protected void sendFile () {
 clientTabbedPane.setSelectedComponent

(serverCommScrollPane);

 Connection conDiag = new Connection(fileText, file,

2);
 conDiag.setVisible (true);
 }

72

/**
 * Event handler - invoked when JMenuItem openFileMenuItem

 * from Menu is
 * selected. Calls method openFile.
 *
 * @param evt Event to be handled.
 */
 protected void openFileMenuItemActionPerformed (ActionEvent

evt) {
 openFile ();
 }

 /**
 * Event handler - invoked when JButton clearFileBtn is

 * selected. Calls
 * method clear.
 *
 * @param evt Event to be handled.
 */
 protected void clearFileBtnActionPerformed (ActionEvent

evt) {
 clear ();
 }

 /**
 * Method clear resets the fileTextEditorPane to null.
 */
 protected void clear () {
 clientTabbedPane.setSelectedComponent

(fileScrollPane);
 fileTextEditorPane.setText ("");
 }

 /**
 * Method setServerCommTextArea sets the text of the

 * serverCommScrollPane to the value of the "conString2"
 * parameter. This is used to display

 * the communication status between the server and client.
 *
 * @param conString2 String to be diplayed.
 */
 protected static void setServerCommTextArea (String

conString2) {
 serverCommTextArea.append (conString2);
 }

73

/**
 * Event handler - invoked when JButton getFileBtn is

 * selected. Calls
 * method getFile.
 *
 * @param evt Event to be handled.
 */
 protected void getFileBtnActionPerformed (ActionEvent evt)

{
 getFile ();
 }

/**
 * Method getFile switches to the getFilePanel and creates

 * a Connection
 * object.
 */
 protected void getFile () {
 clientTabbedPane.setSelectedComponent (getFilePanel);

 Connection conDiag = new Connection(1);
 conDiag.setVisible (true);
 }

 /**
 * Method setGetFileTextArea sets the text of the

 * getFileTextArea to the value of the "files" parameter.
 * This is used to display a file list

 * returned from the server.
 *
 * @param files String to be displayed as file list.
 */
 protected static void setGetFileTextArea (String files) {
 if (files == "") {
 getFileTextArea.setText ("");
 } else {
 getFileTextArea.append (files);
 }
 }

/**
 * Event handler - invoked when JButton getThisFileBtn is

 * selected. Calls method sendFileName.
 *
 * @param evt Event to be handled.
 */

74

 protected void getThisFileBtnActionPerformed (ActionEvent
evt) {

 sendFileName ();
 }

 /**
 * Event handler - invoked when JTextField getFileTextField

 * is invoked by pressing the enter key. Calls method
 * sendFileName.

 *
 * @param evt Event to be handled.
 */
 protected void getFileTextFieldActionPerformed (ActionEvent

evt) {
 sendFileName ();
 }

 /**
 * Method sendFileName creates a Connection object with a

 * filename argument.
 */
 protected void sendFileName () {
 Connection conDiag = new

Connection(getFileTextField.getText (), 3);
 conDiag.setVisible (true);
 }
}

75

APPENDIX B – CONNECTION CLASS

package client;

import java.awt.*;
import java.awt.event.*;

import java.io.*;

import java.net.*;

import javax.swing.*;

/**
 * The Connection class contains all the methods to manage and
 * process the connection for the client.
 *
 * @author David Lowery
 * @version 1.0
 */
public class Connection extends javax.swing.JDialog {
 //~ Instance fields ---------------------------------------

 private JButton connectBtn;
 private JPanel btnPanel;
 private JLabel portLabel;
 private JLabel addressLabel;
 private JTextField portTextField;
 private JPanel textFieldsPanel;
 private JTextField addressTextField;
 private String conStr;
 private Socket conn;
 private BufferedReader bufferedInput;
 private BufferedWriter bufferedOutput;
 private String fileText;
 private String msg;
 private String fileName;
 private File file;
 private byte [] cipherText;
 private String base64EncodedText;
 private int switchKey;
 private String serverMsg;
 protected String ip;
 protected int port;
 private String fileToGet;

76

 private StringBuffer msgBuffer;

 //~ Constructors --

 /**
 * Default constructor for a Connection object.
 */
 public Connection () {
 makeConnection ();
 }

 /**
 * Constructor to build Connection object with the option
 * parameter.
 *
 * @param option Determines which request to send to the

 * client upon connection.
 */
 public Connection (int option) {
 switchKey = option;
 initGUI ();
 }

 /**
 * Constructor to build Connection object with a String

 * parameter containing file text, a File object file
 * parameter and int option parameter.

 *
 * @param fileText String of text from the selected file.
 * @param file File object representing the selected file.
 * @param option Determines which request to send to the

 * client upon connection.
 */
 public Connection (String fileText, File file, int option)

{
 this.fileText = fileText;
 this.fileName = file.getName ();
 this.switchKey = option;

 initGUI ();
 }

77

/**
 * Constructor to build a Connection object with a String

 * filename
 * parameter and an option parameter.
 *
 * @param str Filename to be retreived.
 * @param option Determines which request to send to the

 * client upon connection.
 */
 public Connection (String str, int option) {
 fileToGet = str;
 switchKey = option;
 initGUI ();
 }

 //~ Methods ---

 /**
 * Method initGUI initializes the connection dialog box.
 */
 protected void initGUI () {
 try {
 textFieldsPanel = new JPanel();
 addressLabel = new JLabel();
 addressTextField = new JTextField();
 portLabel = new JLabel();
 portTextField = new JTextField();
 btnPanel = new JPanel();
 connectBtn = new JButton();

 BorderLayout thisLayout = new BorderLayout();
 this.getContentPane ().setLayout (thisLayout);
 thisLayout.setHgap (20);
 thisLayout.setVgap (20);
 this.setTitle ("Connection Dialog");
 this.setResizable (false);
 this.setModal (false);
 this.setName ("Connection Dialog");
 this.setSize (new java.awt.Dimension(342, 241));
 this.setLocation (new java.awt.Point(500, 400));
 this.setVisible (true);
 textFieldsPanel.setLayout (null);
 textFieldsPanel.setPreferredSize

(new java.awt.Dimension(342,
151));

 this.getContentPane ().add (textFieldsPanel,
BorderLayout.NORTH);

78

 addressLabel.setText ("Server I ; P:")
 addressLabel.setPreferredSize (new

java.awt.Dimension(60, 31));
 addressLabel.setBounds (new java.awt.Rectangle(9,

10, 60, 31));
 textFieldsPanel.add (addressLabel);

 // addressTextField.setText("127.0.0.1");
 addressTextField.setToolTipText (
 "Enter valid IP address in the format

192.168.0.0");
 addressTextField.setPreferredSize

(new java.awt.Dimension(167,
28));

 addressTextField.setBounds (
 new java.awt.Rectangle(116, 12, 167, 28));
 textFieldsPanel.add (addressTextField);
 addressTextField.addActionListener (
 new ActionListener() {
 public void actionPerformed

(ActionEvent evt) {
 conActionPerformed (evt);
 }
 });
 portLabel.setText ("Server Port:");
 portLabel.setPreferredSize (new

java.awt.Dimension(77, 30));
 portLabel.setBounds (new java.awt.Rectangle(9,

54, 77, 30));
 textFieldsPanel.add (portLabel);
 portTextField.setText ("1969");
 portTextField.setToolTipText ("Enter valid port

number");
 portTextField.setPreferredSize (new

java.awt.Dimension(89, 28));
 portTextField.setBounds

(new java.awt.Rectangle(115, 54,
89, 28));

 textFieldsPanel.add (portTextField);
 portTextField.addActionListener (
 new ActionListener() {
 public void actionPerformed

(ActionEvent evt) {
 conActionPerformed (evt);
 }
 });
 btnPanel.setPreferredSize (new

79

java.awt.Dimension(342, 52));
 this.getContentPane ().add (btnPanel,

BorderLayout.SOUTH);
 connectBtn.setText ("Connect");
 btnPanel.add (connectBtn);
 connectBtn.addActionListener (
 new ActionListener() {
 public void actionPerformed

(ActionEvent evt) {
 conActionPerformed (evt);
 }
 });
 } catch (Exception e) {
 e.printStackTrace ();
 }
 }

 /**
 * Event handler - invoked when JTextField portTextField,

 * JTextField
 * addressTextField or JButton connectBtn are activated.
 *
 * @param evt Event to be handled.
 */
 protected void conActionPerformed (ActionEvent evt) {
 makeConnection ();
 closeDialog ();

 switch (switchKey) {
 case 1 :
 getRemoteFileList ();

 break;

 case 2 :
 sendFile ();

 break;

 case 3 :
 getRemoteFile ();

 default :
 break;
 }
 }

80

 /**
 * Method sendFile sends the specified file to the server.
 */
 protected void sendFile () {
 try {
 bufferedOutput.write (
 "sendingFile" + fileName.replaceFirst

(".csv", ".bsf") + "\n");

 bufferedOutput.flush ();

 encodeFile ();
 receivedMsgs ();

 bufferedOutput.write (base64EncodedText);

 bufferedOutput.flush ();

 closeConnection ();

} catch (IOException e) {
 e.printStackTrace ();
 }
 }

 /**
 * Method getRemoteFileList is used to retrieve a file list

 * from the server.
 */
 protected void getRemoteFileList () {
 try {
 bufferedOutput.write ("gettingFileList");
 bufferedOutput.newLine ();
 bufferedOutput.flush ();

 receivedMsgs ();

closeConnection ();
} catch (IOException e) {

 e.printStackTrace ();
 }
 }

81

 /**
 * Method closeConnection terminates the connection and

 * releases the unused resources.
 *
 * @throws IOException Exception thrown by method

 * closeConnection.
 */
 protected void closeConnection () throws IOException {
 Client.setServerCommTextArea ("Connection

Terminated\n");
 bufferedOutput.close ();
 bufferedInput.close ();
 conn.close ();
 }

 /**
 * Method closeDialog closes the connection dialog box.
 */
 protected void closeDialog () {
 try {
 finalize ();
 dispose ();

} catch (Throwable e) {
 e.printStackTrace ();
 }
 }

 /**
 * Method makeConnection is used to establish the I/O

 * streams used to communicate with the server.
 */
 protected void makeConnection () {
 try {
 ip = new

String(addressTextField.getText ());
 port = Integer.parseInt

(portTextField.getText ());
 conn = new Socket(ip, port);
 bufferedInput = new BufferedReader(
 new

InputStreamReader(conn.getInputStream ()));
 bufferedOutput = new BufferedWriter(
 new

OutputStreamWriter(conn.getOutputStream ()));
} catch (UnknownHostException e) {

 e.printStackTrace ();
 } catch (IOException e) {

82

 e.printStackTrace ();
 }

Client.setServerCommTextArea (
 "Attempting to Connect to IP " + ip + " on port "

+ port +
 ".\nPlease Standby!\n");
 }

 /**
 * Method receivedMsgs is used to process incoming message

 * traffic from the server.
 */
 protected void receivedMsgs () {
 try {
 switch (switchKey) {
 case 1 : //Get file list from server.
 msg = new String();
 msgBuffer = new StringBuffer();

 for (int i = 0; i < 3; i++) {
 msg = bufferedInput.readLine ();

 msgBuffer.append (msg);
 }

 this.msg = msgBuffer.toString ();
 Client.setGetFileTextArea

(msg.replaceAll (";;",
"\n"));

 break;

 case 2 : //Send file to server.
 msg = bufferedInput.readLine ();
 Client.setServerCommTextArea ("\n" +

msg);

 break;

 case 3 : //Get file from server.
 msg = new String();
 msgBuffer = new StringBuffer();

 while ((msg = bufferedInput.readLine

()) != null) {
 msgBuffer.append (msg + "\n");

83

 }

 Client.setGetFileTextArea ("");
 Client.setGetFileTextArea

(msgBuffer.toString () +
"\n");

 default :
 break;
 }
 } catch (IOException e) {
 e.printStackTrace ();
 }
 }

 /**
 * Method encodeFile transforms the standard text into

 * Base64 encoded text to send to the server.
 */
 protected void encodeFile () {
 base64EncodedText = new

sun.misc.BASE64Encoder().encode (
 fileText.getBytes ());
 }

/**
 * Method getRemoteFile sends the request to the server and

 * processes the
 * results from the server.
 */
 protected void getRemoteFile () {
 try {
 bufferedOutput.write ("gettingFile" + fileToGet);
 bufferedOutput.newLine ();
 bufferedOutput.flush ();

receivedMsgs ();

} catch (IOException e) {

 e.printStackTrace ();
 }
 }
}

84

THIS PAGE INTENTIONALLY LEFT BLANK

85

APPENDIX C – SERVER CLASS

package server;

import sun.misc.BASE64Decoder;

import java.awt.*;
import java.awt.event.*;

import java.io.*;

import java.net.*;

import javax.swing.*;

/**
 * Class Server instaniates a server that is used to store
 * Base64 encoded files or retrieve and decode Base64 encoded
 * files for viewing by clients.
 *
 * @author David Lowery
 * @version 1.0
 */
public class Server extends javax.swing.JFrame {
 //~ Static fields/initializers ----------------------------

 public static JTextArea statusTextArea;
 private static ServerSocket encServer;
 private static Socket con;
 private static BufferedWriter output;
 private static BufferedReader input;
 private static String clientMsg;
 private static String fileName;
 private static String fileToStore;
 private static FileOutputStream fileWriter;
 private static StringBuffer clientMsgBuffer;
 private static int switchKey;
 private static String base64EncodedText;
 private static String cipherText;
 private static String clearText;

86

//~ Instance fields ---------------------------------------

 private JScrollPane statusScrollPane;
 private JMenuItem exitMenuItem;
 private JMenu jMenu3;
 private JMenuBar jMenuBar1;

 //~ Constructors --

/**

 * Default Constructor for Server. Creates a new Server
 * object.

 */
 public Server () {
 initGUI ();
 }

 //~ Methods ---

 /**
 * Method initGUI initializes the server GUI.
 */
 public void initGUI () {
 try {
 statusScrollPane = new JScrollPane();
 statusTextArea = new JTextArea();

 BorderLayout thisLayout = new BorderLayout();
 this.getContentPane ().setLayout (thisLayout);
 thisLayout.setHgap (0);
 thisLayout.setVgap (0);
 this.setDefaultCloseOperation

(WindowConstants.EXIT_ON_CLOSE);
 this.setTitle ("Encryption Server");
 this.setSize (new java.awt.Dimension(807, 627));
 this.setLocation (new java.awt.Point(475, 150));
 this.setIgnoreRepaint (false);
 statusScrollPane.setIgnoreRepaint (false);
 this.getContentPane ().add

(statusScrollPane,
BorderLayout.CENTER);

 statusTextArea.setLineWrap (true);
 statusTextArea.setEditable (true);
 statusTextArea.setToolTipText (
 "Communications between server and client are

" +" displayed here.");
 statusScrollPane.add (statusTextArea);

87

 statusScrollPane.setViewportView
(statusTextArea);

 jMenuBar1 = new JMenuBar();
 jMenu3 = new JMenu();
 exitMenuItem = new JMenuItem();
 setJMenuBar (jMenuBar1);
 jMenu3.setText ("File");
 jMenu3.setVisible (true);
 jMenuBar1.add (jMenu3);
 exitMenuItem.setText ("Exit");
 exitMenuItem.setVisible (true);
 exitMenuItem.setBounds (new java.awt.Rectangle(5,

5, 60, 30));
 jMenu3.add (exitMenuItem);
 exitMenuItem.addActionListener (
 new ActionListener() {
 public void actionPerformed

(ActionEvent evt) {
 exitMenuItemActionPerformed (evt);
 }
 });
 } catch (Exception e) {
 e.printStackTrace ();
 }
 }

 /**
 * Method main initializes the server by calling method

 * showGUI.
 *
 * @param args Default parameter for method main.
 */
 public static void main (String [] args) {
 showGUI ();
 runServer ();
 }

 /**
 * Method runServer is the primary method that processes

 * connections with clients.
 */
 private static void runServer () {
 try {
 encServer = new ServerSocket(1969);

 while (true) {
 awaitConnection ();

88

 getStreams ();
 whichServiceWasRequested ();
 closeConnection ();
 }
 } catch (EOFException eofE) {
 System.out.println ("Connection terminated by

client.");
} catch (IOException e) {

 e.printStackTrace ();
 }
 }

 /**
 * Method closeConnection terminates the connection and

 * releases the unused resources.
 *
 * @throws IOException Exception thrown by method

 * closeConnection.
 */
 private static void closeConnection () throws IOException {
 statusTextArea.append ("Connection Terminated\n");
 output.close ();
 input.close ();
 con.close ();
 }

 /**
 * Method whichServiceWasRequested determines which type of

 * request was made by the client.
 */
 private static void whichServiceWasRequested () {
 try {
 clientMsg = new String();

 String msg = "Connection successful... processing

request.\n";

 output.write (msg + "\n");

 output.flush ();

 clientMsg = input.readLine ();

 if (clientMsg.startsWith ("gettingFileList")) {
 sendFileListToClient ();
 } else if (clientMsg.startsWith ("gettingFile"))

{

89

 sendFileToClient ();
 } else if (clientMsg.startsWith ("sendingFile"))

{
 fileName = clientMsg.substring (11);
 processEncodedFile ();
 }
 } catch (IOException e) {
 e.printStackTrace ();
 }
 }

/**
 * Method sendFileToClient determines which file is to be

 * decoded and returned to the client.
 */
 private static void sendFileToClient () {
 fileName = clientMsg.substring (11);
 decode (fileName);

 try {
 output.write (clearText);

 output.flush ();

} catch (IOException e) {
 e.printStackTrace ();
 }
 }

 /**
 * Method decode is used to decode the selected Base64

 * encoded file.
 *
 * @param fileName2 File to be decoded.
 *
 * @return String representation of the decoded file.
 */
 public static String decode (String fileName2) {
 try {
 BufferedReader in = new BufferedReader(
 new FileReader(fileName2));
 StringBuffer buffer = new StringBuffer();
 String text = new String();

 while ((text = in.readLine ()) != null) {
 buffer.append (text + "\n");

90

 }

 in.close ();
 base64EncodedText = buffer.toString ();

 clearText = new String(
 new BASE64Decoder().decodeBuffer

(base64EncodedText));
} catch (IOException e1) {

 e1.printStackTrace ();
 }

 return clearText;
 }

 /**
 * Method sendFileListToClient generates a file list from

 * the servers root directory and sends it to the client.
 */
 private static void sendFileListToClient () {
 String files = ".";
 String [] filesToList = new File(files).list ();
 StringBuffer fileListBuffer = new StringBuffer();

 for (int i = 0; i < filesToList.length; i++) {
 fileListBuffer.append (filesToList [i] + ";;");
 }

 try {
 output.write (fileListBuffer.toString ());
 output.newLine ();
 output.flush ();
 } catch (IOException e) {
 e.printStackTrace ();
 }
 }

 /**
 * Method processEncodedFile captures all of the Strings

 * that represent the file from the client as a single
 * String, which is then passed as an

 * argument to the method storeFile.
 */
 private static void processEncodedFile () {
 clientMsgBuffer = new StringBuffer();

 clientMsg = new String();

91

 try {
 while (input.ready ()) {
 clientMsg = input.readLine ();

 clientMsgBuffer.append (clientMsg + "\n");
 }

 fileToStore = clientMsgBuffer.toString ().trim

();
 statusTextArea.append ("Saving " +

fileName + ":\n" +
fileToStore);

 storeFile (fileToStore);
} catch (IOException e) {

 e.printStackTrace ();
 }
 }

 /**
 * Method storeFile stores the file received from the

 * client.
 *
 * @param fileToStore2 String representation of the Base64

 * encoded file to store on the server.
 */
 private static void storeFile (String fileToStore2) {
 try {
 FileWriter fileOut = new FileWriter(fileName);
 fileOut.flush ();
 fileOut.write (fileToStore2);
 fileOut.flush ();
 fileOut.close ();

} catch (IOException e) {
 e.printStackTrace ();
 }
 }

 /**
 * Method getStreams gets the I/O streams for communication

 * between client and server.
 *
 * @throws IOException DOCUMENT ME!
 */
 private static void getStreams () throws IOException {
 output = new BufferedWriter(
 new OutputStreamWriter(con.getOutputStream

92

()));

 output.flush ();

 input = new BufferedReader(
 new InputStreamReader(con.getInputStream

()));

 statusTextArea.append ("\nGot Streams\n");

/**
 * Method awaitConnection tells the server to wait for a

 * connection.
 *
 * @throws IOException Exception thrown by method

 * waitConnection.
 */
 private static void awaitConnection () throws IOException {
 statusTextArea.append ("Waiting for client

connection.\n");
 con = encServer.accept ();
 statusTextArea.append (
 "Connection established from: " +
 con.getInetAddress ().getHostName ());
 }

 /**
 * Method showGUI creates a new instance of this class and

 * shows it inside a new JFrame.
 */
 public static void showGUI () {
 try {
 Server inst = new Server();
 inst.setVisible (true);
 } catch (Exception e) {
 e.printStackTrace ();
 }
 }

93

/**
 * Event handler - invoked when JMenuItem exitMenuItem from

 * Menu is selected. Terminates client application.
 *
 * @param evt Event to be handled.
 */
 protected void exitMenuItemActionPerformed (ActionEvent

evt) {
 System.exit (0);
 }
}

94

THIS PAGE INTENTIONALLY LEFT BLANK

95

APPENDIX D – PARSER WEB SERVICE CLASS

package xmlService;

import org.apache.soap.*;
import org.apache.soap.rpc.*;

import java.io.*;

import java.net.*;

import java.util.*;

/**
 * Class Parser provides limited interaction with the specified
 * server via HTTP using SOAP requests. The Parser class
 * retrieves a decoded file from the server and converts it to
 * valid, well formed XML. This class is designed
 * to be ran as a stand-alone client to the server Web service
 * or can be deployed as a Web service itself. This code is a
 * highly modified version of a SOAP test client provided by LT
 * Scott Rosetti/USN.
 *
 * @author David Lowery
 * @version 1.0
 */
public class Parser {
 //~ Instance fields ---------------------------------------

 private String target = "urn:EncServer";

96

//~ Constructors --

 /**
 * Default constructor for the Parser. Creates a new

 * Parser object.
 */
 public Parser () {
 }

//~ Methods ---

 /**
 * Method getDecodedFile makes a SOAP request to the server

 * Web service invoking the "decode" method. Once
 * retrieved, the text file is parsed and converted into
 * XML.

 *
 * @param str String representation of the URL for the SOAP

 * RPC router.
 * @param file String representation of the filename of the

 * file to be parsed.
 *
 * @return A String representation of the file transformed

 * into XML.
 *
 * @throws Exception Exception thrown.
 */
 public String getDecodedFile (String str, String file)
 throws Exception {
 String value = null;
 URL url = new URL(str);
 int count = 0;
 String filename = file;
 ArrayList tokenizedValue = new ArrayList();
 ListIterator i;
 StringTokenizer tokenizer;

 try {
 Call call = new Call();
 call.setTargetObjectURI (target);
 call.setEncodingStyleURI

(Constants.NS_URI_SOAP_ENC);

 call.setMethodName ("decode");

 Vector params = new Vector();

97

 params.addElement (
 new Parameter("filename2", String.class,

filename, null));
 call.setParams (params);

 org.apache.soap.rpc.Response resp = call.invoke

(url, "");

 // Check the response.
 if (resp.generatedFault ()) {
 Fault fault = resp.getFault ();
 System.out.println ("The call failed: ");
 System.out.println ("Fault Code = " +

fault.getFaultCode ());
 System.out.println (
 "Fault String = " + fault.getFaultString

());
 }

 Parameter result = resp.getReturnValue ();

 //System.out.println(result);
 ue = (String) result.getValue (); val
 } catch (Exception e) {
 System.out.println ("ERROR: " + e);
 }

 tokenizer = new StringTokenizer(value, ", \n\r\t");

 while (tokenizer.hasMoreTokens ()) {
 tokenizedValue.add (tokenizer.nextToken ());
 }

 i = tokenizedValue.listIterator ();

 while (i.hasNext ()) {
 int index = i.nextIndex ();
 String element = (String) tokenizedValue.get

(index);
 int key = (int) ((i.nextIndex () + 1) %

4);

 // System.out.println(key);
 switch (key) {
 case 0 :
 tokenizedValue.set (
 index,

98

 "<DutyStatus>" + element +

"</DutyStatus></IndividualStatus>");

 //System.out.println(tokenizedValue.get(index));
 break;

 case 1 :
 tokenizedValue.set (
 index,
 "<IndividualStatus><LastName>" +

element +
 "</LastName>");

 // System.out.println(tokenizedValue.get(index));
 break;

 case 2 :
 tokenizedValue.set (
 index, "<FirstName>" + element +

"</FirstName>");

 // System.out.println(tokenizedValue.get(index));
 break;

 case 3 :
 tokenizedValue.set (
 index, "<Gender>" + element +

"</Gender>");

 // System.out.println(tokenizedValue.get(index));
 break;

 default :
 break;
 }

 i.next ();
 }

 String st = tokenizedValue.toString ();
 st = "<?xml version=\"1.0\"?><PersonnelStatus " +
 "xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-

instance\" " +

 "xsi:noNamespaceSchemaLocation=\"file:///C:/eclipse" +
 "/workspace/Thesis/PersonnelStatusFile.xsd\">" +

99

 * @param args Default parameter for method main.

 st.replace ('[', ' ').replace (',', ' ').replace
(']', ' ') +

 "</PersonnelStatus>";

 return st;
 }

/**
 * Method main initializes the Parser and sets the initial

 * parameters for the SOAP client.
 *

 *
 * @throws Exception Exception thrown.
 */
 public static void main (String [] args) throws Exception {
 String filename =

"c:/eclipse/workspace/Thesis/PersonnelStatusFile.
bsf";

 String convertedFile = null;

 try {
 String server = new String(

"http://localhost:8080/soap/servlet/rpcrouter");
 Parser client = new Parser();
 String results = client.getDecodedFile

(server, filename)
 .toString ();
 File file = new

File("PersonnelStatusFile.xml");
 BufferedWriter writer = new BufferedWriter(new

FileWriter(file));

 writer.write (results);
 System.out.println ("File Processed");
 writer.close ();
 } catch (Exception e) {
 System.out.println ("ERROR: " + e);
 }
 }
}

100

THIS PAGE INTENTIONALLY LEFT BLANK

101

APPENDIX E – TRANSFORMATION WEB SERVICE CLASS

package xmlService;

import org.apache.soap.*;
import org.apache.soap.rpc.*;

import java.io.*;

import java.net.*;

import java.util.*;

/**
 * Class Parser provides limited interaction with the specified
 * server via HTTP using SOAP requests. The Parser class
 * retrieves a decoded file fromt the
 * server and converts it to valid, well formed XML. This class
 * is designed to be ran as a stand-alone client to the server
 * Web service or can be deployed as a Web service itself. This
 * code is a highly modified version
 * of a SOAP test client provided by LT Scott Rosetti/USN.
 *
 * @author David Lowery
 * @version 1.0
 */
public class Parser {
 //~ Instance fields ---------------------------------------

 private String target = "urn:EncServer";

 //~ Constructors --

 /**
 * Default constructor for the Parser. Creates a new

 * Parser object.
 */
 public Parser () {
 }

102

//~ Methods ---

 /**
 * Method getDecodedFile makes a SOAP request to the server

 * Web service invoking the "decode" method. Once
 * retrieved, the text file is parsed and converted into
 * XML.

 *
 * @param str String representation of the URL for the SOAP

 * RPC router.
 * @param file String representation of the filename of the

 * file to be parsed.
 *
 * @return A String representation of the file transformed

 * into XML.
 *
 * @throws Exception Exception thrown.
 */
 public String getDecodedFile (String str, String file)
 throws Exception {
 String value = null;
 URL url = new URL(str);
 int count = 0;
 String filename = file;
 ArrayList tokenizedValue = new ArrayList();
 ListIterator i;
 StringTokenizer tokenizer;

 try {
 Call call = new Call();
 call.setTargetObjectURI (target);
 call.setEncodingStyleURI

(Constants.NS_URI_SOAP_ENC);

 call.setMethodName ("decode");

 Vector params = new Vector();
 params.addElement (
 new Parameter("filename2", String.class,

filename, null));
 call.setParams (params);

 org.apache.soap.rpc.Response resp = call.invoke

(url, "");

103

 // Check the response.
 if (resp.generatedFault ()) {
 Fault fault = resp.getFault ();
 System.out.println ("The call failed: ");
 System.out.println ("Fault Code = " +

fault.getFaultCode ());
 System.out.println (
 "Fault String = " + fault.getFaultString

());
 }

 Parameter result = resp.getReturnValue ();

 //System.out.println(result);
 value = (String) result.getValue ();

 } catch (Exception e) {
 System.out.println ("ERROR: " + e);
 }

 tokenizer = new StringTokenizer(value, ", \n\r\t");

 while (tokenizer.hasMoreTokens ()) {
 tokenizedValue.add (tokenizer.nextToken ());
 }

 i = tokenizedValue.listIterator ();

 while (i.hasNext ()) {
 int index = i.nextIndex ();
 String element = (String) tokenizedValue.get

(index);
 int key = (int) ((i.nextIndex () + 1) %

4);

 // System.out.println(key);
 switch (key) {
 case 0 :
 tokenizedValue.set (
 index,
 "<DutyStatus>" + element +

"</DutyStatus></IndividualStatus>");

//System.out.println(tokenizedValue.get(index));
 break;

104

 case 1 :
 tokenizedValue.set (
 index,
 "<IndividualStatus><LastName>" +

element +
 "</LastName>");

 //System.out.println(tokenizedValue.get(index));
 break;

 case 2 :
 tokenizedValue.set (
 index, "<FirstName>" + element +

"</FirstName>");

 //System.out.println(tokenizedValue.get(index));
 break;

 case 3 :
 tokenizedValue.set (
 index, "<Gender>" + element +

"</Gender>");
 //System.out.println(tokenizedValue.get(index));
 break;

 default :
 break;
 }

 i.next ();
 }

 String st = tokenizedValue.toString ();
 st = "<?xml version=\"1.0\"?><PersonnelStatus " +
 "xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-

instance\" " +

 "xsi:noNamespaceSchemaLocation=\"file:///C:/eclipse" +
 "/workspace/Thesis/PersonnelStatusFile.xsd\">" +
 st.replace ('[', ' ').replace (',', ' ').replace

(']', ' ') +
 "</PersonnelStatus>";

 return st;
 }

105

/**
 * Method main initializes the Parser and sets the initial

 * parameters for the SOAP client.
 *
 * @param args Default parameter for method main.
 *
 * @throws Exception Exception thrown.
 */
 public static void main (String [] args) throws Exception {
 String filename =

"c:/eclipse/workspace/Thesis/PersonnelStatusFile.bsf";
 String convertedFile = null;

 try {
 String server = new String(

"http://localhost:8080/soap/servlet/rpcrouter");
 Parser client = new Parser();
 String results = client.getDecodedFile

(server, filename)
 .toString ();
 File file = new

File("PersonnelStatusFile.xml");
 BufferedWriter writer = new BufferedWriter(new

FileWriter(file));

 writer.write (results);
 System.out.println ("File Processed");
 writer.close ();

 } catch (Exception e) {
 System.out.println ("ERROR: " + e);
 }
 }
}

106

THIS PAGE INTENTIONALLY LEFT BLANK

107

APPENDIX F – PHP CLIENTS

The PHP code used to call the Web services from the Web site was very simple to implement

and only consisted of a few lines. The following constitutes the three different clients implemented to

call the services provided by the POC.

The “Raw Data” client:
<?php

require 'SOAP/Client.php';

$soap = new

SOAP_Client('http://localhost:8080/soap/servlet/rpcrouter');

$params = new SOAP_Value('file', 'string',

'c:/eclipse/workspace/Thesis/PersonnelStatusFile.bsf');

$hits = $soap->call('decode', $params, 'urn:EncServer');

print_r($hits);

?>

The “XML Data” client:
<?php

require 'SOAP/Client.php';

$soap = new

SOAP_Client('http://localhost:8080/soap/servlet/rpcrouter');

$params = array(
 new SOAP_Value('url', 'string',

'http://localhost:8080/soap/servlet/rpcrouter'),
new SOAP_Value('file', 'string',

'c:/eclipse/workspace/Thesis/PersonnelStatusFile.bsf')
);

$xmlFile = $soap->call('getDecodedFile', $params,

'urn:XMLPersonnelStatusService');

108

print_r($xmlFile);

?>

The “Summary Report” client:
<?php

require 'SOAP/Client.php';

$soap = new

SOAP_Client('http://localhost:8080/soap/servlet/rpcrouter');

$params = array(
 new SOAP_Value('url', 'string',

'http://localhost:8080/soap/servlet/rpcrouter'),
new SOAP_Value('file', 'string',

'c:/eclipse/workspace/Thesis/PersonnelStatusFile.bsf')
);

$htmlFile = $soap->call('getTransformedFile', $params,

'urn:PersonnelStatusSummary');

print_r($htmlFile);

?>

109

BIBLIOGRAPHY

Achour, Mehdi. Friedhelm Betz, Antony Dovgal, Nuno Lopes, Philip Olson, Georg
Richter, Damien Seguy and Jakub Vrana, “PHP Manual”, PHP.net, 28 August
2004, http://www.php.net/manual/en/, Last Accessed: September 2004.

“Apache SOAP v2.3.1 Documentation”, Apache SOAP,

http://ws.apache.org/soap/docs/index.html, Last Accessed: September 2004.

Ballinger, Keith. David Ehnebuske, Christopher Ferris, Martin Gudgin, Canyang Kevin

Liu, Mark Nottingham, Prasad Yendluri, “Basic Profile 1.1”, WS-I, 24 August
2004, http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html, Last
Accessed: September 2004.

Boubez, Toufic. Glen Daniels, Doug Davis, Steve Graham, Yuichi Nakamura,

Ryo Neyama and Simeon Simeonov. Building Web Services with Java: Making
Sense of XML, SOAP, WSDL, and UDDI. Sams Publishing, 2001.

Brittain, Jason and Ian F. Darwin. Tomcat: The Definitive Guide. O’Reilly, 2003.

Bryan, Douglas. Vadim Draluk, Dave Ehnebuske, Tom Glover, Andrew Hately, Yin

Leng Husband, Alan Karp, Keisuke Kibakura, Chris Kurt, Jeff Lancelle, Sam
Lee, Sean MacRoibeaird, Anne Thomas Manes, Barbara McKee, Joel Munter,
Tammy Nordan, Chuck Reeves, Dan Rogers, Christine Tomlinson, Cafer Tosun,
Claus von Riegen and Prasad Yendluri. “UDDI Version 2.04 API Specification”,
UDDI Committee, 19 July 2002, http://uddi.org/pubs/ProgrammersAPI-V2.04-
Published-20020719.htm, Last Accessed: September 2004.

Bueno, Ricardo, “Global Information Grid – Questions and Answers”, The DoD

Software Tech News, April 2004, 8 – 9.

Burke, Eric M., Java and XSLT. O’Reilly, 2001.

Chappell, Dave and Tyler Jewell. Java Web Services. O’Reilly, 2002.

 “Core Enterprise Services Strategy – Draft Version 1.1”, Office of the Assistant

Secretary of Defense for Networks and Information Integration, 1 July 2003.

Cornell, Gary and Cay S. Horstmann. Core Java 2: Volume II – Advanced Features.

Prentice Hall PTR, 2001.

Coyle, Frank P., XML, Web Service, and the Data Revolution. Addison Wesley, 2002.

http://www.php.net/manual/en/
http://ws.apache.org/soap/docs/index.html
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm

110

Drager, Steve. Lois Walsh, Dr.. “Grid Computing for Information Superiority”, Software
Tech News, Volume 7, Number 1, http://www.softwaretechnews.com/stn7-1/grid-
superiority.html, Last Accessed: September 2004.

Farrell, Stephen and Shivaram Mysore (Working Group Chairs). “Mission Statement”,

XML Key Management Working Group, http://w3.org/2001/XKMS/#Mission,
Last Accessed: September 2004.

Foster, Ian and Lee Liming, “The Role of Standards in the Grid”, The DoD Software

Tech News, April 2004, 10-14.

“Grid Computing Defined”, Software Tech News, Volume 7, Number 1,

http://www.softwaretechnews.com/stn7-1/grid-defined.html, Last Accessed:
September 2004.

Harold, Elliotte Rusty. Java I/O. O’Reilly, 1999.

Harold, Elliotte Rusty. Java Network Programming, 2nd Edition. O’Reilly, 2000.

Haas, Hugo. Web Services Glossary, W3C – World Wide Web Consortium, 11 February

2004, http://w3.org/tr/2004/note-ws-gloss-20040211/, Last Accessed: September
2004.

Hutton, Claude O. Jr., “3D Battelspace Visualization Using Operational Planning Data”,

Master’s Thesis, Naval Postgraduate School, 2003.

J2EE Documentation, Sun Java, http://java.sun.com/j2ee/1.4/docs/index.html, Last

Accessed: September 2004.

J2SE Documentation, Sun Java, http://java.sun.com/j2se/1.4.2/docs/index.html, Last

Accessed: September 2004.

JWSDP, Sun Java, http://java.sun.com/webservices/jwsdp/index.jsp, Last Accessed:

September 2004.

Knudsen, Jonathan and Patrick Niemeyer. Learning Java, 2nd Edition. O’Reilly, 2002.

Mangano, Sal. XSLT Cookbook. O’Reilly, 2002.

Merriam-Webster Online, http://m-w.com, Last Accessed: September 2004.

Metsker, Steven John. Building Parsers with Java. Addison Wesley, 2001.

Meyerriecks, Dawn. “Net-Centric Enterprise Services: What Problem Are We Trying To

Solve?”, Global Information Grid Enterprise Services, 9 August 2001,
http://ges.dod.mil/articles/netcentric.htm, Last Accessed: September 2004.

http://www.softwaretechnews.com/stn7-1/grid-superiority.html
http://www.softwaretechnews.com/stn7-1/grid-superiority.html
http://www.softwaretechnews.com/stn7-1/grid-defined.html
http://w3.org/tr/2004/note-ws-gloss-20040211/
http://java.sun.com/j2ee/1.4/docs/index.html
http://java.sun.com/j2se/1.4.2/docs/index.html
http://java.sun.com/webservices/jwsdp/index.jsp
http://m-w.com/
http://ges.dod.mil/articles/netcentric.htm

111

Microsoft, “COM: Delivering on the Promises of Component Technology”,
MicrosoftCOM, http://www.microsoft.com/com/, Last Accessed: September
2004.

Net-Centric Warfare, http://www.dtic.mil/jcs/j6/education/warfare.html, Last Accessed:

September 2004.

OASIS – Organization for Advancement of Structured Information Standards,

http://oasis-open.org, Last Accessed: September 2004.

Object Management Group, “CORBA Basics”, CORBA FAQ,

http://www.omg.org/gettingstarted/corbafaq.htm, Last Accessed: September
2004.

Osias, Michael, “Grid Computing – A Service Perspective”, The DoD Software Tech

News, April 2004, 5 – 8.

Reagle, Joseph (Working Group Chair). “XML Encryption Charter”, XML Encryption

Working Group, June 2002, http://w3.org/Encryption/2002/06/xmlenc-charter,
Last Accessed: September 2004.

Reilly, David and Michael Reilly. Java Network Programming and Distributed

Computing. Addison Wesley, 2002.

Sklar, David and Adam Trachtenberg. PHP Cookbook. O’Reilly, 2002.

Sridharan, Prashant and Richard Steflik. Advanced Java Networking. Prentice Hall PTR,

2000.

“The Challenge”, Global Information Grid Enterprise Services,

http://ges.dod.mil/about/challenge.htm, Last Accessed: September 2004.

The Open Group, “What is Distributed Computing and DCE?”, DCE Portal,

http://www.opengroup.org/dce, Last Accessed: September 2004.

“The Resources”, Global Information Grid Enterprise Services,

http://ges.dod.mil/about/resources.htm, Last Accessed: September 2004.

 “The Solution”, Global Information Grid Enterprise Services,

http://ges.dod.mil/about/solution.htm, Last Accessed: September 2004.

Thompson, Laura and Luke Welling. PHP and MySQL Web Development, Second

Edition. Sams Publishing, 2003.

UDDI – Universal Description, Discovery and Integration, http://www.uddi.org/, Last

Accessed: September 2004.

http://www.microsoft.com/com/
http://www.dtic.mil/jcs/j6/education/warfare.html
http://oasis-open.org/
http://www.omg.org/gettingstarted/corbafaq.htm
http://w3.org/Encryption/2002/06/xmlenc-charter
http://ges.dod.mil/about/challenge.htm
http://www.opengroup.org/dce
http://ges.dod.mil/about/resources.htm
http://ges.dod.mil/about/solution.htm
http://www.uddi.org/

112

Van Dine, Wayne A. Jr., “GIG from a Warfighter Perspective”, 27 October 2003, Email

attachment from Ricardo Bueno – a member of the GIG ES Architecture Working
Group, among others.

Varhol, Peter. “SOA Offers Competitive Advantages”, FTPOnline, 30 March 2004,

http://www.ftponline.com/special/soa/overview/default_pf.asp, Last Accessed:
September, 2004.

Vaswani, Vikram. XML and PHP. New Riders Publishing, 2002.

W3C – World Wide Web Consortium, http://w3.org/, Last Accessed: September 2004.

Walker, Ellen, “Grid Computing” , The DoD Software Tech News, April 2004, 3-14.

Web Services Description Working Group, “Web Services Description Language

Version 2.0 Part 1: Core Language”, 3 August 2004,
http://www.w3.org/TR/2004/WD-wsdl20-20040803, Last Accessed: September

Webopedia, http://www.webopedia.com, Last Accessed: September 2004.

WS-I – Web Services Interoperability, http://www.ws-i.org/, Last Accessed: September

2004.

XML Activity, “Extensible Markup Language”, World Wide Web Consortium,

http://w3.org/XML/, Last Accessed: September 2004.

XML Activity, “Extensible Markup Language”, World Wide Web Consortium,

http://w3.org/XML/, Last Accessed: September 2004.

http://www.ftponline.com/special/soa/overview/default_pf.asp
http://w3.org/
http://www.w3.org/TR/2004/WD-wsdl20-20040803
http://www.webopedia.com/
http://www.ws-i.org/
http://w3.org/XML/
http://w3.org/XML/

113

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Marine Corps Representative
Naval Postgraduate School
Monterey, CA

4. Directors, Training and Education

MCCDC, Code C46
Quantico, VA

5. Director, Marine Corps Research Center

MCCDC, Code C40RC
Quantico, VA

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)

Camp Pendleton, CA

7. Dr. Sue Numrich
 Defense Modeling and Simulation Office (DMSO)

Alexandria, VA

8. Virginia Dobey
 Defense Modeling and Simulation Office (DMSO)

Alexandria, VA

9. Mike Rugienius
Defense Modeling and Simulation Office
Alexandria, VA

10. Chris Turrell

Defense Modeling and Simulation Office (DMSO)
Alexandria, VA

11. COL George Stone
 Battle Command, Simulation & Experimentation Directorate (DAMO-SB)

Crystal City, VA

114

12. MAJ Favio Lopez
 Battle Command, Simulation & Experimentation Directorate (DAMO-SB)

Crystal City, VA

13. Robert Eubank

NSA
Ft. Meade, MD

14. Associate Professor Don Brutzman

Naval Postgraduate School
Monterey, CA

15. Research Associate Curt Blais

Naval Postgraduate School
Monterey, CA

16. Research Associate Jeff Weekley

Naval Postgraduate School
Monterey, CA

17. Capt James Neushul

MCTSSA
Camp Pendleton, CA

	I. INTRODUCTION
	OVERVIEW
	PROBLEM SPACE
	MOTIVATION
	1. Personal Background
	2. The Need for Improved Integration and Extensibility
	3. The Need for Web-based Interoperable Solutions

	D. THESIS ORGANIZATION

	II. RELATED WORK
	A. INTRODUCTION
	B. CURRENT OPEN SOURCE WEB SERVICE STANDARDS ORGANIZATIONS
	1. World Wide Web Consortium (W3C)
	2. Web Services Interoperability (WS-I) Organization
	Organization for the Advancement of Structured Information S

	C. JAVA-BASED WEB SERVICES
	D. BRIEF TECHNICAL ASSESSMENT OF WEB SERVICES
	1. Problem Resolution Through Maturing Standards and Technol
	2. Defining Web Services
	3. Best Practices
	4. Extensibility is Crucial
	5. Web Service Usage

	E. SUMMARY

	III. THE GLOBAL INFORMATION GRID (GIG)
	A. INTRODUCTION
	B. THE CONCEPT OF GRID COMPUTING
	C. A JOINT WARFIGHTING PERSPECTIVE ON THE CONCEPT OF NETWORK
	D. GIG COMPOSITION
	1. Global Information Grid Enterprise Services (GIG ES)
	2. Multiple Services Provided by a Single System

	E. THE WARFIGHTER’S PERSPECTIVE
	F. SUMMARY

	IV. DEVELOPMENT OF THE PROOF OF CONCEPT (POC) EXEMPLAR
	A. INTRODUCTION
	B. RESEARCH AND DEVELOPMENT METHODOLOGY
	C. DEVELOPMENT AND TESTING PLATFORMS
	D. DATA REQUIREMENTS
	1. Personnel Reporting (G1)

	E. WEB SERVICE IMPLEMENTATION
	1. Service Providers
	Client Application
	Server Application
	Server Web Service
	d. Parser Web Service
	e. Transformation Web Service

	2. Service Requesters
	a. Basic Client
	b. Parser Client
	c. Transformation Client

	F. WEB PORTAL/REPORT IMPLEMENTATION
	G. SUMMARY

	V. PROOF OF CONCEPT (POC) EXEMPLAR RESULTS
	INTRODUCTION
	B. WEB SERVICE EMPLOYMENT
	C. OPERATING-SYSTEM INDEPENDENCE
	D. INTEROPERABILITY
	E. PARSER FUNCTIONALITY
	F. SUMMARY

	VI. CONCLUSIONS AND RECOMMENDATIONS
	CONCLUSIONS
	RECOMMENDATIONS FOR FUTURE WORK
	1. XML-Based Authentication and Authorization Technologies
	2. Web-Service Based Common Operating Picture (COP)
	3. Web Service Discovery

	APPENDIX A – CLIENT CLASS
	APPENDIX B – CONNECTION CLASS
	APPENDIX C – SERVER CLASS
	APPENDIX D – PARSER WEB SERVICE CLASS
	APPENDIX E – TRANSFORMATION WEB SERVICE CLASS
	APPENDIX F – PHP CLIENTS
	BIBLIOGRAPHY
	INITIAL DISTRIBUTION LIST

